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1.0 INTRODUCTION 

1.1 Significance 

Progress in information technology over the past two decades has dramatically increased the 
amount of information that any given user needs to handle. Information workers are now 
presented with more information that they can hope to assimilate. The information technology 
explosion has confronted data users with incredible volumes of data, which mask rather expose the 
useful information that is required to make timely, intelligent decisions. This obviously further 
complicates the control of processing units that must be located remote for either security or cost 
reasons. This adds further complexity to large-military-system data management problems for all 
types of Army, Air Force, Navy, and Marine Corps needs. For example, Desert Storm required 
transportation of troops/equipment over long distances with large numbers of degrees of freedom 
such as departure/arrival schedules for ships, connecting flights, troops, and military equipment. 
Optimizing a transportation route in such a case requires considering a large number of connecting 
points. In fact, even in such a seemingly simple case the number of statistical problems is large. 

Current GA techniques, though much faster than even the fastest non-GA convergence techniques, 
are not as fast as POC's Fast Evolving Parallel Genetic Algorithm (FEPGA) by an order of 
magnitude. This advantage becomes critical for large systems with more than 10 degrees of 
freedom. These degrees of freedom, which define the dimensionality of specific military systems, 
represent the space-time domain (x,y,z,t) plus a number of constraints specific to the given data 
management problem. 

1.2 POC's Approach as Proposed 

For fast decision making in an exponentially growing search domain, Physical Optics Corporation 
(POC) proposed for Phase I a universal decision module based on a FEPGA, which not only has 
an edge in convergence speed, but also has several additional features: 

1. The FEPGA can learn the historical convergence (or generational evolution) 
between parents, between offspring, and between parents and offspring. This 
characteristic allows the FEPGA to search for a global and therefore robust 
solution, rather than local solutions. The FEPGA performs intelligent adaptive 
offspring selection, making it well suited for decision making in rapidly 
changing environments. 

2. Through this adaptive selection process, the FEPGA eliminates the huge proportion 
of redundant offspring by means of a very simple computational fitness function. 
As a result, the FEPGA can afford to search a large data space or handle decision 
making for a large-dimensionality problem. In Phase II, we implemented a 
FEPGA that can handle problems of up to 20 dimensions through parallel 
processing. 

3. The FEPGA can adjust the rate of evolution. This is useful for time-dependent 
problems. Responding to sensor inputs at variable rates, the FEPGA controls its 
sensitivity and adaptability. For example, in a rapidly changing environment the 
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FEPGA will speed up evolution to adapt quickly; when there is little change in the 
environment, the FEPGA can slow down evolution and concentrate on spanning 
the relationship of parents and offspring in the current generation. This allows the 
decision making system to increase its sensitivity to prepare for unexpected subtle 
changes in the environment. 

4. The tunable rate of generation evolution is the key feature in the FEPGA. At 
initialization, crossover is the dominant factor, but its importance later decreases, 
maintaining the average convergence gradient (ACG) and conserving convergence 
time. The crossover and mutation rates are optimized using real-time ACG values. 
More specifically, if we observe degrading ACG we reduce the crossover rate. 
The rate is determined by fuzzy logic rules, which in turn are determined by the 
history of the convergence, the similarity of the parents, and the magnitude of the 
convergence gradient. 

5. Conventional GAs have a fixed fitness function (i.e., a fixed boundary condition), 
which prevents them from adapting easily to rapidly changing environments. The 
FEPGA, on the other hand, has a tunable fitness function (i.e., an adjustable 
boundary condition), making it agile in a dynamic environment. 

For Phase II, POC proposed to expand the FEPGA, integrating it into a parallel neural computing 
environment, and to investigate commercial application possibilities such as route optimization. In 
Phase II, POC did investigate these areas, with the results documented in this report. 

The structure of this report is as follows. Section 2 describes the Phase II results . After a listing 
of the highlights of Phase II research, each category of the results is presented in detail in the order 
of description of software refinement, genetic neural network design, parallel GA with DSP, 
Mathlink version of GA optimizer, and other software development efforts. Section 3 describes 
software created in Phase II. The POC neural network generator is presented as well as a genetic 
neural network, Mathlink optimizer, and the new version of the function optimizer. Executable 
files for these programs are on the enclosed diskette. 

2.0 PHASE II RESULTS 

2.1 Highlights of Phase II Results 

In Phase I, POC had demonstrated a universal decision making method based on GA and fuzzy 
logic. Specifically, POC completed the following: 

1. Designed parallel genetic algorithm evolvers 
2. Performed computer simulation 
3. Determined the transfer function and population size 
4. Maximized efficiency of mutation 
5. Determined the adaptability of fuzzy rules to GA. 

Based on these results, POC set several objectives for Phase II, including refining and optimizing 
the GA algorithm, designing a neural network using the fast-evolving fuzzy logic-based genetic 
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algorithm, and designing and implementing the parallel multiprocessor computing platform. The 
three major milestones for Phase II research efforts set were: 

1.        Optimization of the nonlinear adaptive parallel computing paradigm; 
Implementation of the high speed parallel multiprocessor computing platform; and 
Integration of the parallel computing paradigm and the parallel computing platform 
into an adaptive neural network. 

2. 
3. 

In order to meet these three milestones, POC established five Phase II technical objectives: 

Objective 1. Optimize and refine the fast evolving fuzzy logic-based genetic algorithm. This 
will include applying the dynamic parallel programming method to genetic 
algorithms and completing the fuzzy rules that monitor and control each GA 
iteration. 

Objective 2. Design a neural network using the fast evolving fuzzy logic-based genetic 
algorithm. This will include selecting a neural network model for a particular 
application based on selecting a problem domain and a network architecture. 
The main goal of this objective focuses on the adaptive training of a neural 
network using POC's fast evolving fuzzy logic-based genetic algorithm. 

Objective 3. Design and implement the parallel multiprocessor computing platform. This 
will include designing a three-dimensional multi-digital signal processor (DSP) 
computing platform using commercially available DSP boards, interconnect 
topologies, and interfaces between the modules. 

Objective 4. Implement an algotecture that is the integration of the developed algorithm and 
the platform. This will finalize the Phase II prototype implementation. 

Objective 5. Optimize the Phase II prototype. This will include a demonstration of the Phase 
II prototype. An evaluation of the optimized prototype will be performed in 
order to develop a commercially viable high dimensionality decision making 
system for Phase III. 

To meet Objective 1, the genetic algorithm written in Phase I was developed into a general 
purpose scheduler optimized with a fuzzified genetic algorithm. Although the scheduler 
problem looks simple enough for a human agent, its combinatorial complexity becomes daunting 
as the number of inputs increases. However, with its parallel and global search power, the GA 
performs combinatorial searches in problem spaces that are otherwise prohibitively large. 

POC made crucial modifications to the design of the GA optimization package, so that it can be 
adapted readily to a broad range of application areas. POC also developed a "Mathlink" version of 
the optimization module to make it callable from Mathematica™, with the objective of making it 
more commercially attractive. 

To meet the second objective, POC integrated a GA with neural networks (NNs). An example 
may clarify why this is useful. In a classification or financial prediction problem, where a neural 
network is trained with the data, a large number of variables affect the output, and the number of 
possible combinations among them is enormous. If a developer or user must try all the possible 
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combinations of input variables, train a network, and check the results, it requires several days or 
even weeks just to identify the set of input variables that affect the result. Needless to say, as the 
number of inputs grows the number of possible combinations grows exponentially. If instead we 
use a genetic algorithm to find the best combination of input variables for NN training, we can 
avoid training countless neural network configurations that would be abandoned eventually 
anyway. Even though the problem sets for which genetic algorithms and neural networks are best 
suited are not the same, a genetic algorithm can facilitate the selection of the data set and NN 
architecture. For that reason, POC developed the genetic neural network described in more detail 
in later sections. 

To meet Objective 3, POC implemented the GA in a parallel computing environment. We selected 
the TI 320C80 DSP, a fully programmable parallel processor, as the parallel computing platform. 
The processors on the C80 are connected by a crossbar network to on-chip SRAM and to a high 
speed external memory transfer controller for fast data transfer. This makes the use of shared 
memory efficient. 

To meet Objectives 4 and 5, POC implemented a genetic algorithm in the parallel DSP 
environment, achieving a considerable speedup. 

The highlights of Phase II are, in summary: 

1. The GA program developed in Phase I was refined. POC repackaged the GA 
optimization modules as Dynamic Link Libraries that is callable from any Windows 
application. 

2. The GA has been integrated with a neural network for network topology 
optimization. In this software development effort, POC used GA to evolve neural 
network structure to select the best combination and structure of neural network 
parameters. 

3. A parallel DSP board was selected and installed, and a GA was tested on it. POC 
selected a TMS320C80 DSP board with a parallel computation architecture, and ran 
the GA program on it. 

4. A Mathlink GA was developed as an external module of Mathematica. POC wrote 
the Mathematica plug-in module as a function optimizer using Mathlink. 

5. The GA Route Optimizer was written, tested, and demonstrated. The GA route 
optimizer was implemented, and its usefulness for solving troop transportation 
problems was demonstrated. 

These topics are discussed in some detail in the following sections. 

2.2 Refinement of the Software 

The initial GA program had many non-trivial limitations: The fact that it was DOS-based made it 
difficult to use. The list of fitness functions was predetermined, restricting its practical 
applicability.   The dynamic range of each gene was limited to positive integer values.   We 
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revamped the whole software package to make it useful for virtually any application that needs an 
optimization module. 

2.2.1 Introduction of Windows DLL Module 

Windows™ DLLs are very similar in concept to DOS libraries. Unlike static DOS libraries, 
however, DLLs (Dynamic Link Libraries) are linked to the main program at run-time so that the 
routines can be used by one or more programs. During compilation and linking, a program finds 
the DLLs that contains the routines it needs. After the program is loaded, these routines are 
dynamically linked. The advantages of DLLs over static library routines is that they can be linked 
simultaneously to multiple applications. 

In Phase II, POC repackaged the GA optimization modules in DLL format, separating them from 
the user interface module, and developed a GUI for the program. Another improvement in Phase 
II is the added capability for the user to select a preset fitness function or type in any other fitness 
function. Thus, the user can put frequently used functions into a data file, but still can use the 
system with any other custom-made function. 

2.2.2 Description of GA Optimizer 

In entering a function, the arguments must be called xl, x2, ..., up to a maximum of xlO. 
Algebraic notation is used to enter an expression involving the arguments. Parentheses can be 
used, as can exponentiation. The built-in functions, such as abs, sin, if-else, are listed in Table 2- 
1. If a string is entered incorrectly, the program warns of a parsing failure. 

Table 2-1. Built-in functions in GA Optimizer with Number of Arguments 

abs one ifelse three * 
atan one In one 

atan2 two log one 
ceiling one Pi no 

cos one round one 
exp one sin one 
floor one sqrt one 

x,y,z. Returns x,y,z 

Once a function is selected or entered, the arguments are assumed to be bounded by 0 and 10, but 
the user can modify the range as needed. The search for extrema is carried out to a tolerance of 
±0.1 on each argument, and the user can change the tolerance range as well. The bounds and 
tolerances are set by a dialog invoked by clicking the gene ranges button; the current gene ranges 
(argument ranges) are displayed in red in the upper right panel. 
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Optimization is initiated by clicking the Optimize button. For each iteration, the iteration count is 
displayed, as well as information regarding the actions taken by the genetic algorithm in that 
iteration. 

While the optimization is proceeding, the Cancel button is available to abort a lengthy optimization. 
The final results of a converged optimization process are shown in the lower right panel. Multiple 
sessions can be initiated using File/New, though only one problem can be optimized at a time. 

The File/Maximum Number of Iterations function, as its name implies, sets a maximum number of 
iterations. The GA Optimizer has been made easier to use, even for a user with minimal 
background in computing. 

2.3 Genetic Neural Network Design 

Genetic algorithms and neural networks are both modeled after biological systems in nature; the 
GAs imitate genetic evolution, and NNs mimic the brain. Each is suited to different types of 
problems. GA is primarily a search mechanism, testing out thousands of possible solutions to a 
problem and evaluating the results. For a GA to be applicable, some sort of model or function 
must be available against which to evaluate the output for each set of inputs the GA tries. Given an 
appropriate function for evaluation, the GA can find the best mix, best order, or best grouping. 

A neural network tries to make sense of inputs and outputs by building some kind of internal 
model or function to connect them. This makes it good at pattern recognition and prediction based 
on data. 

Given these properties, GAs can enhance neural networks. In Phase n, POC used GAs to find the 
best input combination for neural network training and the optimal neural network architecture for 
any given problem. 

2.3.1 Evolving Neural Network 

The powerful search capabilities of GAs can be combined with the learning capabilities of a neural 
network, using the GA to search through data to find the set of variables that will support the most 
accurate model, saving a great deal of training time. POC wrote software to automate much of the 
neural network design and development that a developer otherwise does by hand, by trial and 
error. These tedious tasks include testing/training data set selection, and determining which input 
variables to use. In our system, the GA is used to evolve neural network structures and select 
which input variables are significant. This evolving, learning, adapting artificial life capability is a 
powerful problem solving paradigm that can be used to meet many real world challenges. 

This system was developed to meet the need to easily and quickly discover the best data elements 
and neural network architectures to build effective neural network applications. Many hours of 
human effort are spent attempting to find the best networks manually. It is clear that an effective 
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automation tool is needed to off-load these hours of effort onto computers; POC applied GA 
techniques to this purpose. 

2.3.2 Structure of a Genetic Neural Network 

The program combines a GA and an NN so that the former determines the optimal structure of the 
latter. Specifically, it does the following: 

1. Builds and validates training and test data sets 
2. Creates a population of candidate input variables and neural structures 
3. Builds the neural networks 
4. Trains them 
5. Evaluates them 
6. Selects the best networks, in terms of some fitness function 
7. Pairs up the genetic material representing the inputs and neural structure of these 

networks, and exchanges genetic material between them 
8. Puts in a few mutations for a flavor of random search 
9. Goes back into the training/testing cycle again. 

This continues for a defined number of generations, for a defined period of time, or until an 
accuracy goal is reached (see Figure 2-1). 

Fuzzified Genetic Algorithm 

Figure 2-1 
Genetic neural network system. 
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We represent the architecture of a network of N units by a connection control matrix C of 
dimension N x (N+l) (see Figure 2-2). The first N columns of matrix C represent the connectivity 
relationships among units in the neural network, and the final (N+l) columns store the threshold 
biases for the unit. For example, in Figure 2-2 a unit that receives two inputs will have a threshold 
bias of 1, and otherwise 0. 

1 Origin Node 

Destination 

Node 

1 2 3 4 5 bias 
1 0 0 0 0 0 0 
2 0 0 0 0 0 0 
3 1 1 0 0 0 1 
4 1 1 0 0 0 1 
5 0 0 1 1 0 1 

o 
000000000000110001110001001101 

o 

Figure 2-2 
Conversion from connection control matrix at top, to bit strings, center, 

to network architecture at bottom. 

Each entry Q;j in the matrix C is a member of the connection control set S, and indicates the nature 
of the connection from unit to unit. Thus, column i of C represents the fan-out of connections 
from unit i. Similarly, row j represents the fan-in of connections to unit j. The bit string in the 
middle of Figure 2-1, which has been created by the concatenation of successive rows of matrix C, 
is the population to be processed by the genetic operators. 

Note that many different neural network architectures are implemented in a given generation. We 
automate neural network design by two adaptive processes: genetic evolution through generations 
of network architecture spaces, and back propagation learning in individual networks to evaluate 
the selected architectures. Thus, cycles of learning in an individual architecture are embedded 
within cycles of evolution in populations.  Each learning cycle presents an individual neural 
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network with the set of input and output pairs that define the task. The back propagation learning 
algorithm then adjusts the network connection weights so that it performs the input/output mapping 
task with increasing accuracy. Each evolution cycle evaluates one population of network designs 
according to their associated fitness values to yield an offspring population of more highly adapted 
network designs. 

Back propagation is computationally intensive, but the effectiveness of genetic algorithms' 
combinatorial search capabilities would be difficult to overstate. For example, a problem 
consisting of finding the best combination (subset) of 20 inputs and up to 15 hidden nodes in a 
back propagation neural network has over 16 million permutations. To train each network in a 
hard, full search would be an appropriate project for a supercomputer, but with genetic algorithms 
a very good solution often appears in less than 1500 evaluations, which is less than one ten- 
thousandth of the total possible configurations. With the help of some statistical data analysis, 
highly fit networks are often found in the first generation evaluated. This is clearly an efficient 
means for discovering effective network structure/input combinations. 

Note that by the nature of genetic algorithms these networks are not necessarily optimal, but do 
typically represent good solutions. 

2.4 Parallel  GA  with  DSP-Selection  of a  Commercially Existing DSP 
Board 

POC used the Texas Instruments (TI) TMS320C80 processor integrated with a Matrox Genesis 
board from Matrox Imaging Products Group (see Figure 2-2), a complete PC/AT plug-in board for 
parallel processing. It supports four 32-bit parallel processors (PPs) and one 32-bit master 
processor (MP), all connected by a crossbar network. Additional C80 nodes, each with one MP 
and four PPs, can be mounted on the main board. This is one reason POC has selected the C80 
for GA parallel computing. More processing power can be added easily depending on the 
processing power requirements for the particular application. It can be configured as SIMD (single 
instruction, multiple data) or MIMD (multiple instruction, multiple data). Therefore, a flexible 
system configuration can be designed taking into consideration cost, speed, and other parameters 
specific to each application. 
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Figure 2-3 
TMS320C80 processor board. 

The major advantages of using the TMS320C80 DSP platform for parallel computing are: 

• Not bus dependent 
• Standardized building block for multiprocessing 
• Wide variety of modules available for specific applications 
• Upgradable performance at low incremental cost. 

The four communication ports of the TMS320C80 offer a wide range of connection possibilities. 
It has a 32 bit address and data bus, and operates at 50 MHz, performing 100 MFLOPS. 

Figure 2-3 shows the C80 processor board configuration. The high-performance link connecting 
acquisition, display, and processing is through the VIA (Video Interface ASIC), a powerful 
interface for the input port and the C80 connection, the SDRAM, and a PCI master/slave bus 
interface. The wide range of Matrox Genesis modules includes: general purpose modules carrying 
SRAM, multi-C80 modules; and application-specific modules, which carry a C80 and an I/O 

10 
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interface.   All of the modules connect directly to the PCI bus interface of the Pentium PC 
motherboard. 

Each C80, which can communicate with the main board through the VIA and in turn through the 
PCI-to-PCI bridge, has the following features: 

One 32-bit RISC master processor with integral FPU 
Four 32-bit integer advanced parallel processor DSPs 
32 kbytes of internal RAM shared among processors (expandable to 50 kbytes) 
Crossbar for optimal internal connectivity 
Transfer controller for high performance external I/O 
50 MHz system clock 
Internal FPU capable of 100 MFLOPS 
Up to 2 billion RISC-like operations per second 
2.4 Gbytes/second sustainable on-chip data transfer rate 
400 Mb/s off-chip peak transfer rate 

Layer-to-layer interconnection is available between C80 processor boards. 

2.5 Mathlink Version of GA Optimizer 

POC's commercialization efforts for the GA Optimizer have been fruitful; a mathematical library 
that links the optimization module to Mathematica™ was written and favorably received by 
Wolfram Research, Inc. A sample run of the GA module in Mathematica follows, where bold face 
indicates what the user types in and normal Courier font shows that response from Mathematica: 

link = Install ["e:\\pocsoft\\minimax"] 
LinkObject [e:\pocsoft\minimax, 2, 2] 

Minimize2 ["sin(xl_ -x2*cos(x2)", -10.0, 10.0, 0.1, 
-10.0, 10.0, 0.1] 

{-1.5625, -9.53125, -10.4772] 

?Minimize2 
Minimize2 [f_String, Ll_Real, Tl_Real, L2_Real, 

U2_Real, T2_Real minimum value of the 2-argument function 
f with sets of the lower bounds, and the tolerances: 
Property of Physical Optics Corporation. 

Uninstall [link] 
e:\pocsoft\minimax 

11 
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2.5.1 Description of Mathlink Version of GA Optimizer 

To use the GA Optimizer in Mathematica, the user copies the executable file "minimax.exe" that 
accompanies this report to any designated directory, starts Mathematica, and then makes a 
connection to the file by entering 

link = Install ["e: Wpocsof tWminimax" ] 

This assumes that "minimax.exe" resides in the "e:\pocsoft" directory. Once the link is made, one 
can find the minimum value of a function with up to ten arguments. The first-order function is 
used here for the purpose of illustration: 

MiniMizel ["first_order_function here", Ll, Ul, Tl] 
where   Ll:   the lower bound of the argument 

Ul:   the upper bound of the argument 
Tl:   the tolerance 

Similarly, the user type the following command for a second-order function: 

MiniMize2 ["second_order_function here", -10.0, 10.0, 0.1, -10.0, 
10.0, 0.1] 

The output is given in the form of a list such as: 

{value_of_argl_at_minimum, 
value_of_arg2_at_minimum, 
the minimum value} 

One can find the maximum value of the function and the values of the arguments at that point in a 
similar way by calling the "maximize" function: 

Maximize2     ["200  -   (xl  A  2  + xl  -  11)   ~2   -   (xl  + x2   A  2  -7)   ~2", 
-6.0,   6.0,   0.1,   -6.0,   6.0,   0.1] 

Multiple search sessions are possible. After completion of the task, the connection is broken by 
entering: 

Uninstall [link] 

Figure 2-4 shows a plot of a function and its minimum value as found by a GA Optimizer routine 
called from within Mathematica. 
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In[6] : = 

Plot[Sin[x]   + x/5,   {x,   -10,   10}] 

Out [6] = 

-Graphics- 
lu[7j:m 

MiniMizel["sin(xl)   + xl/5",   -10.0,   10.0,   0.01] 
Out f7j = 

{-8.05664,    -2.59086} 

Figure 2-4 
Mathlink version of GA Optimizer at work. 

2.5.2 Advantages of POC Optimizer Module 

One of the major features of a genetic algorithm is its ability to find a globally near optimal value 
without falling into local optima. While Mathematica™ can search for the global maxima and 
minima only for linear functions, the GA Optimizer does so for virtually any type of function. 

Furthermore, POC's Mathlink version of the GA Optimizer includes 10 routines for finding 
maximum values: MaxiMizel,..., MaxiMizelO. Mathematica has no corresponding functions. 

2.6 Other Software Development 

2.6.1 Troop Transportation Global Optimization Problem 

Consider a large-volume, high dimensionality, military data management problem; Troop 
Transportation Global Optimization, for which the time to reach an optimal solution increases 
logarithmically with the size of the problem (or with the number of degrees of freedom). Using 
FEPGA, however, the base of the logarithm is reduced step-by-step, so that convergence time 
depends much less critically on the size of the problem. This is because the rates of crossover, 
mutation, and reproduction are adaptable, controlled by the chromosome pool first order 
differential, which is a new internal parameter of the GA system. POC's GA system is parametric, 
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i.e., the crossover, mutation, and reproduction rates are controlled internally by the convergence 
process. 

2.6.1.1        Description of the Problem 

The Troops Air Transportation (TAT) double-sorting global optimization problem belongs to the 
general class of time-scheduling problems. Consider the example TAT problem shown in 
Figure 2-5. At the start, the routing paths can be chosen almost arbitrarily, with, say, fixed 
connection points (such as A, 2,7,10, 15, Q). Each flight path is organized as a binary stream, or 
gene. For K planes, a single statistical realization is represented by K flight paths, so a 
chromosome is K-dimensional. 

Figure 2-5 
TAT through 17 airports, from Port A to Port Q. 

Each port (except A and Q) is numbered by a digit 1 through 15. The numbers in brackets 
determine the specific flight, such as: A, (1), (2), (3), (4), Q, where four connecting ports are 
always assumed. Figure 2-5 is only a spatial coordinate map; i.e., the schedule is not shown. 

2.6.1.2 Analysis of the Problem 

In order to demonstrate the feasibility of using FEPGA for global optimization of troop 
transportation, we first perform problem quantization, or chromosome pool generation, and define 
the fitness function. We make a number of simplifying assumptions, not to make the problem 
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simple to solve (since much more complicated problems can be solved using the FEPGA), but 
rather for clarity of explanation. 

We make the following simplifying assumptions: 

• We transport only troops (i.e., single soldiers). 
• We transport only through the air (using airplanes). 
• Although the military units are transported through a variety of airports (or ports), 

all units are transported from port A to port Q as shown in Figure 2-5. For 
simplicity, a constant number of four connecting ports is always assumed. 

• The military units transported are sufficiently small (e.g., platoons) that they are not 
partitioned for flight. 

In spite of these simplifying assumptions, considerable flexibility is still implemented in the 
program, such as variable numbers of units and troops, variable numbers of ports, planes, and 
their locations, and variable plane speeds. Also, very flexible time schedules based on the 
"window" concept are assumed. 

The chromosome space (pool) is separately constructed from the travel path for each plane as 
follows: 

1) q-segmented numbering is introduced; e.g., the example travel path shown in 
Figure 2-5 is translated into the following q-sequence: 

(A, 2, 7, 10, Regular notation) 

Jill   I 
(A, 1, 2, 3,        q-sequence) (2-1) 

2) All travel paths' regular notations are organized in sequence according to arithmetic 
value; i.e., for two paths, as shown in Figure 2-5: 

(2,7, 10, 15) and (3, 6, 9, 15) (2-2) 

We construct two integers: 

271015 and 36915 (2-3) 

with larger integers following smaller. 

3) A unique sequential number is attached to each integer. This route is shown on the 
basis of a simple example. Assume only four connecting ports, three of which are 

15 



Final 1097.3331 Army GA II 
Contract No.: DAAH04-96-C-0063 

(2-4) 

used for each travel path.  If these ports are numbered 1, 2, 3, and 4, then the 
following travel paths are possible: 

123 124 234 134 

132 142 243 143 

213 214 324 341 

231 241 342 314 

312 412 412 413 

321 421 421 431 

They are organized in sequence: 

123   124   132   134   142   143   213 

$       $       £       $       $       $       $ (2-5) 
(1)     (2)     (3)     (4)    (5)    (6)    (7) 

This is a 24-number sequence. 

4) The organized sequence is presented in the form of a binary stream; e.g., 

22 = 0 + 25 x 1 + 24 x 0 + 23 x 1 + 22 x 1 + 21 x 0 + 2° 
= 0+16 + 0 + 4+2+0 
= (010110) (2-6) 

5) Each flight path is organized as a binary stream, or gene. Therefore, for a single 
realization represented by K flight paths (some of them identical), equivalent to K 
planes, we obtain K genes, so a chromosome is K-dimensional. 

The maximum number of possible flight paths is: 

(1/2)N! 
(N-P)! 

(2-7) 

where N and P are integers, n! = n(n-l) (n-2) ..., N is the total number of ports, 
and P is the number of connecting ports to be used for each flight. The (1/2) comes 
from the fact that all flights are one-way. Since every flight path can be realized in 
a number of ways, as in Eq. (2-7), and the number of possible paths is equal to the 
number of planes K, the total number of realizations (or number of degrees of 
freedom) is: 

D=D(N,K;P)= 
(l/2)N!lK 

(N-P)! 
(2-8) 
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For example: 

N=50, P=4, K=200; then Eq. (2-8) evaluates to 101288, which is far to large for 
conventional sorting. 

2.6.1.3 Cost Function for the Troops Transportation Double-Sorting Global 
Optimization Problem 

The Troops Transportation Cost Function (T2CF) is defined as follows: 

T2CF = Wt£ X ^Ek+wd.5: (MAX^TAV-tAj) 
K       q V i 

+Wd„£ (MAX[0,tAi-TAi..])+WA,2 (faAX[0,TQi.-tQlJ 

( -\ 

wA. MAX o5S
Lik-ck 

v        L •                -V 
f \ 

MAX 0,XLkn-Cn 
V / 

(2-10) +WA.£ (MAX[0,tQi-TQi.,])+WA. 

+WR(MAX[0,Rik -MRT])+Wp 

where the critical weighting factors are: 

Wt Travel weighting factor 
Wd% Wd" Departure schedule penalty weighting factors 
WAS WA" Arrival schedule penalty weighting factors 
Wa Penalty weighting factor for capacity of the plane 
Wp Penalty weighting factor for capacity of the port 
WR Penalty weighting factor for maximum allowable 

travel time of troops. 

These penalty factors should be adjusted according to the importance of a given constraint. For 
example, if a not "too-late" arrival time is more critical than a not "too-early" arrival time, then 

WA">WA\ (2-11) 

The following term is a quadratic bracket: 

MAX[0, H], (2-12) 

which is either 0 if a given constraint is satisfied, or H if this constraint is violated. 

The chromosome space is now tested against the T2CF cost function value, and the small T2CF 
values are promoted by using the FEPGA route. 
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The next section outlines a preliminary version of the transportation scheduler that POC built. 

2.6.2 GA Route Scheduler 

To demonstrate the feasibility of using a genetic algorithm for a transportation optimization 
problem, POC developed a scheduler that finds the shortest route through a set of cities. This 
demonstration program made use of a Los Angeles area map, on which a number of cities were 
identified as candidate "ports." The initial state of the program is shown in Figure 2-6. 
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Figure 2-6 
Initial state of route optimization problem 

In this program, a map is displayed with a number of checkboxes for selection. Each checkbox is 
associated with one of 16 cities. The user can select the cities he/she needs to visit by checking the 
checkbox. The number of cities checked is displayed in the topmost textbox, the accumulated 
route length in the second box, the optimized route length after optimization in the third box, and 
the mileage saving in the last box. At the right of the screen, the original itinerary and the 
optimized one are displayed. Figure 2-7 shows eight cities selected. 
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Figure 2-7 
Input selection in the GA scheduler 

In Figure 2-7, the textboxes reflect the changed statistics. The route length for the selected cities is 
shown, with their names. The user now can click on the Optimize button and start optimization. 

The stopping condition can be defined in any of a number of ways. In this program, the number 
of iteration since the last improvement is compared with a preset threshold value. As long as the 
stopping condition is not satisfied, a new mating pool is created based on the performance of the 
previous population and crossover and mutation generate a new population, which then goes back 
to the cycle. When the stopping condition is met, the optimization process ends and the program 
displays the result as in Figure 2-8, which shows the optimized route and other statistics. At this 
point, the user can start another round of optimization by clicking Redo, or can exit the program by 
selecting Close. 
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Figure 2-8 
Final result of optimization. 

3.0 

3.1 

PHASE II DEMONSTRATION 

Network Generator 

POC's Fuzzified Evolving Parallel Genetic Algorithm (FEPGA) can find the best neural network 
structure for a given problem. The FEPGA generates various neural network structures in 
accordance with a number of fitness function generators. The neural network is trained on the 
input data of the selected problem. The minimum squared error that guides the convergence of the 
neural network is used as the fitness measure. The best structures found are input to the FEPGA 
for evolution. The top level algorithm flow is as follows: 
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Create a population 
Initialize the population 
for i = 1 to max_iterations 

for j = 1 to population_size 
Decode chromosome 
Build neural network 
Train/evaluate neural network 
Assign some evaluation score to the network performance 
If it's a good one, then keep it in a list  

next j 
Selection 
Pair mates 
Crossover 
Mutate 

next i 

3.1.1 Description of the XOR Problem 

As a simple case to demonstrate a working neural network system, POC used the much-studied 
exclusive OR (XOR) problem. This is a linearly non-separable problem that cannot be solved 
without using hidden units. The input and the expected output for XOR is shown in Table 3-1. 

Table 3-1     Input and Output of XOR Problem 

Input Output 
0    0 0 
0    1 1 
1    0 1 
1   1 0 

The XOR function maps two binary inputs to a single binary output as follows: 00->0, 01->1, 
10->1,11->0. The XOR problem has been tested on the POC network builder (POCNET). 

3.1.2 POC Neural Network Generator 

The expanded POC Neural Network Generator interface is shown in Figure 3-1. 
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PQC Netwoik Generator 
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Figure 3-1 
Expanded Neural Network Generator. 

3.2 Genetic Neural Network 

3.2.1 Population Generation 

The genetic algorithm generates a population with parameters that will be used in neural network 
development. The network generation module of the POCNET must deal in variables such as the 
number of inputs, number of hidden layers, number of hidden units, type of transfer function, and 
the number of outputs. The XOR problem, which we have taken as our test case, has two inputs 
and one output. The "number of inputs" is the number of variables that are fed to the neural 
network, and the "number of records" is the total number of input data records used for training. 
The number of hidden layers is usually one or two, depending on the complexity of the network. 
For the XOR problem, four or five hidden units should be enough. The transfer function is a 
tangent function or a logistic function, so a single bit is sufficient to represent it. The number of 
outputs varies from problem to problem, but the output is always a single one-bit unit. 

In sum, one string member of the population can be represented as: 

1010   J V    01     J V    001     y V     01      J \     01 

number on inputs   number of hidden layers   number of hidden units   type of transfer funciton    number of outputs 

The total number of bits used to represent the gene here is 13. The population pool can contain 
few or many genes, depending on the complexity of the problem. 
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3.2.2 Mapping of Genotype to Phenotype 

"Genotype" in artificial genetic systems refers to the total package of strings, or to individual 
strings. The genotype is decoded to form a particular parameter set, or alternative solution. The 
designer of an artificial genetic system has a variety of alternatives for coding both numeric and 
nonnumeric parameters. Our task here is to map the string (genotype) to a neural network structure 
(phenotype). To do so we use parameters such as neural network type, number of hidden layers, 
total number of nodes, and transfer function. Neural network design using genetic algorithm has 
been reported in a number of papers H-7]. Not only does the current work differ from theirs in 
algorithmic details, but it also focuses on actual implementation of the paradigm. 

The number of hidden layers can be 0, 1, or 2. The number of hidden neurons in a layer can vary 
from 1 to 256. The transfer function can be logistic sigmoid, hyperbolic tangent, or linear. A 
chromosome can encode four parameter as shown in Figure 3-2. 

network type 
number 
of layers 

number 
of nodes transfer function 

Figure 3-2 
Structure of a chromosome. 

For example, after initialization a GA population could have the following set of chromosomes: 

011010101 
101010101 
110111010 
111010111 

This genotype could then be decoded to the corresponding phenotype: 

011010101  >► BP, 2,5 logistic sigmoid 

101010110  ->► BPNN.2, 5 hyperbolic tangent 

110111010  >► LVQ, 1,6 hyperbolic tangent 

111010111  >- LVQ, 2,5 linear 
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3.2.3 Fitness Function 

The performance of a given neural network determines the fitness value assigned by the genetic 
algorithm, represented by the average error rate. In this program, two types of transfer function 
are used: a tangent function and a logistic function. How the error is calculated depends on the 
neural network type used. 

The hyperbolic tangent function is used as a transfer function to calculate the output y for each 
node as follows: 

y = \^)' (3"1) 

where 

D = w0 + Iwixi, (3-2) 
i=l 

where w0 is the bias of the node, each wf is a weight for the connection from the i-th node of the 
previous layer, and xi is the input from the i-th node of the previous layer. For estimating 
purposes, it is standard practice to use only linear transfer functions in the nodes of the output 
layer. 

The logistic function is expressed as follows: 

y=(d^' (3"3) 

where y is the output of the logistic function, the xi's are the inputs, and the wi's are the free 
parameters. D is defined as in Eq. (3-2). 

The neural network performance P for each input is calculated by the selected method, and the 
error rate E is found by comparing P with the desired output O. Then the average error rate A is 
given by the following simple formula: 

IE 
(3-4) 

number of records 
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3.2.4 Genetic Operation of GNN 

Each gene — i.e., each neural network architecture in our program — that performs well remains in 
the population. After the neural network module is executed, pairs of genes are mated and undergo 
crossover and mutation. 

3.2.5 Genetic Neural Network 

The first version of the genetic neural network (GNN) interface is shown in Figure 3-3 and the 
corresponding executable is included on the attached diskette. 
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Figure 3-3 
POC genetic neural network. 

The GNN interface consists of menus, three frames, and two control buttons, each of which is 
explained below. 

3.2.5.1 Menus 

The GNN has three menus: GaRun, About, and Exit. The functions of these menus are self- 
explanatory: GaRun starts program execution. About displays software information, and Exit 
allows the user to exit the program. 
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3.2.5.2 Network Parameter Information 

This frame contains four subframes: Network Type, Number of Hidden [Units], Transfer 
Function, and Number of Layers. Network Type offers a choice of the three types of network 
supported in GNN: Back Propagation, Time Delayed Neural Network, and Continuous Adaptive 
Time Neural Network. Combined with other parameters, it forms a unique neural network 
topology for data training. Three numbers are displayed - 3, 5, and 7 -- in Number of Hidden 
Units. The Transfer Function frame displays three functions: Logistic, Hyperbolic Tangent, and 
Linear Function. One of these transfer functions is implemented in the hidden layer(s). The 
Number of [Hidden] Layers frame is not implemented at this time; the number of hidden layers is 
fixed at one. The three variable parameters can generate 27 combinations (3x3x3). The goal of 
the software is to find the combination that minimizes the error rate. 

3.2.5.3 GA Statistics 

This frame contains two subframes, GA Progress Info[rmation] and Best Combination. The first 
row in the Progress Information box is for debugging, and is immaterial to the software. The text 
box in the second row displays the number of passes in the neural network training completed so 
far. Every time the neural network iterates, it adjusts the weights depending on the performance of 
the particular set of neurons and feeds back the result to the next iteration. Up to 1000 passes are 
implemented now. The last row displays the fitness value of the chromosome that contains the 
information on the neural network topology selected for data training: network type, number of 
hidden units, and transfer function used. In the GNN, since a neural network is used to 
approximate the fitness function, the fitness value of a genetic algorithm is the average error rate of 
the neural network. 

The Best Combination frame displays information about the best neural network topology found so 
far in the current GNN session. It displays the network type, number of hidden units, type of 
transfer function, and the value of the fitness function. 

3.2.5.4 Command Controls 

The two controls buttons in the GNN, Go GA and Exit, have the same effect as the two menus, 
GaRun and Exit. When the user clicks on the Go GA button, one selection from each group in the 
Network Parameter Information frame turns cyan, showing that the colored component has been 
selected for constructing the neural network to be trained. The source code for GNN is listed in 
Appendix 1. 

3.3 Mathlink Optimizer 

Figure 3-4 shows the use of POC's GA Optimizer Mathematica plug-in for finding maximum 
values for a modified form of Himmelblau's function. 
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MaxiMize2      ["200   -   (xlA2   + x2   -   11) A2   -   (xl  + x2A2   -   7)A2"/ 

-10.0,   10.0,   0.01,   -10.0,   10.0,   0.01] 

Out   [26] = 
{-2.80273,   3.134765625,   199.999324689125} 

In   [27]: = 

MaxiMize2      [»200   -   (xlA2   + x2   -   11)A2   -   (xl  +  x2A2   -  7)A2", 
-10.0,   10.0,   0.01,   -10.0,   10.0,   0.01] 

Out   [27] = 
{2.998046875, 2.001953125, 199.999870330066} 

MaxiMize2  ["200 - (xlA2 + x2 - 11)A2 - (xl + x2A2 - 7)A2", 
-10.0,   10.0,   0.01,   -10.0,   10.0,   0.01] 

Out   [28]+ 
{-3.7793, -3.28125, 199.999835462295} 

Figure 3-4 
Sample run of MaxiMize for Himmelblau's function. 

As shown in this figure, we can run Optimizer more than once to find multiple sets of argument 
values, if there are any for the same optima. 

3.4 Function Optimizer Update 

The function minimization program developed at the start of this project was revised, and the five 
most important functions were rewritten as Dynamic Link Libraries (DLLs), making them callable 
from any Windows application program. These functions are functionString, 
initializeMinimization, iterateMinimization, terminateMinimization, and getResults. This is another 
step toward developing general-purpose Application Program Interfaces (APIs). It shows that GA 
APIs can be used in many applications with just a slight code change. The source code is listed in 
Appendix 2. 

3.4.1 Dynamic Link Library APIs 

DLLs are Windows-based program modules that can be loaded and linked at run time. Since most 
non-trivial Windows programs are large because they include a graphical user interface as well as a 
programming interface, it is customary for programmers to develop APIs in DLL format, so that 
they can afford valuable functions to application developers while hiding code from the user. Of 
the five functions converted to DLL format, functionString parses the input function string and 
interprets it, and the others are self-explanatory. The algorithmic description using these functions 
is as follows: 
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functionString 
initializeMinimization 
for i = 1 to i < exit_value 

iterateMinimization 
i=i+l 

end 
terminateMinimization 
getResults 

To use these modules, all an application developer need do is to write a user interface and establish 
a data communication channel among modules. 

3.4.2 Software update 

POC developed a sample Windows interface program to demonstrate the feasibility of porting GA 
core functions to other applications. The GUI of the DLL test program is shown in Figure 3-5 and 
its source code is listed in Appendix 3. 

!§§ Genetic Algorithm DLL TEST 

:;;EHXTWJ:..   Ver?*^ 
MM,E£ 

FunctionString LIST 
-xr2 + 2*x1 +1 
2*sinfx1l + cosfxll 
x1*2-2*x1 +1 

Optimized Value I 
:::::^??::x;^S^jyjf 

OPTIMIZE 
..-t-r-yy.« „■■>:* ■«:;.:; 

Parameters INFO 
lowerBounds -10.0 
upperBounds 10.0 

tolerance 0.1 

OptimizationMode  

<• minimize      C maximize 

Num Of Genes: 118 
Num Of GeneBit: 

Chromosome Length: 

MVIVIT ••" -H UUifiUUtt 

Figure 3-5 
Genetic algorithm DLL test program. 
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The user can select a function from the menu or type one in the FunctionString LIST box. The 
functionStringO function picks up the string input, parses it, and builds a semantic tree. The range 
of variables can be given using the Parameters INFO box. Here the minimum and maximum 
boundary of each parameter can be adjusted. Optimization Mode allows the user to select either 
minimization or maximization mode. Either initializeMinimization() or 
initializeMaximization() will generate the initial values of chromosomes. At this point the user 
can select OPTIMIZE to start evolution; iterateMinimization() will continue evolution until the 
termination condition is met. The output information is reported in Optimized Value. Num of 
Genes, Num of GeneBits, and Chromosome Length are intended to help the developers 
understand the inner workings of the evolution process. 

3.5 Building an Application on TI DSP/Genesis 

The TI board hosts a 32-bit RISC master processor with an integrated floating point unit (FPU) 
capable of 100 MFLOPS, and four 32-bit parallel processors with a combined power of 2 billion 
operations per second. Its crossbar network has an on-chip data transfer rate of 
2.4 Gbytes/second, significantly accelerating matrix calculation. To take full advantage of the 
DSP's processing power, we established a fast communication channel between the motherboard 
and the processor board, allowing us to take advantage of its memory resources, display, and input 
capabilities. Figure 3-6 diagrams the relationship between the application and the subsystems. 

Application 

Processor Board Main Board 

Data Buffer Data Input Display 

Figure 3-6 
Relationship between application and hardware subsystems. 

The program code that establishes a communication channel and allocates buffer memory on the 
processor board to the input is reproduced as Listing 3-1: 
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Listing 3-1 Establish Communication Channel and Allocate Buffer Memory. 

// Allocate an application 
MappAlloc(M_DEFAULT,&MilApplication); 
// Disable default Matrox Imaging Library (MEL) error message display 
MappControl(M_ERROR,M_PRINT_DISABLE); 
// Retrieve previous and user handler pointer 
MappInquire(M_CURRENT_ERROR_HANDLER_PTR,&HandlerPtr); 
MappInquire(M_CURRENT_ERROR_HANDLER_USER_PTR,&HandlerUserPtr); 
// Hook MDL error on function DisplayError() 
MappHookFunction(M_ERROR_CURRENT,DisplayErrorExt,this); 
// Allocate a system 
MsysAlloc(M_SYSTEM_SETUP,M_DEF_SYSTEM_NUM,M_COMPLETE, 
&MilSystem); 

After informing the host computer of the application we are running, we allocate the processor 
board system resources so that they can be used by the application. The search space is then 
loaded in the memory buffer on the processor board for further processing. The code in 
Listing 3-1 has been integrated into GA applications and a performance acceleration of 60% over 
the same CPU without the processor board was observed as shown in Table 3-2. 

Table 3-2.   Convergence Time Versus Size of the Problem. 

Search  Algorithm Problem, Size N Convergence Time in seconds 
for t = s and N = 10,000 

Unordered Sequential 10,000 100 
Ordered Sequential 10,000 13.29 
GA w/o Tl C80 DSP 10,000 4 
GA with Tl C80 DSP 10,000 0.2 

This speedup is largely due to the C80's parallel processing capability. Some C80 processor board 
performance benchmarks are listed in Table 3-3. 

Table 3-3.   Processing Performance Benchmarks of Tl TMS320C80. 

Operation   (512x512x8   images) 

Histogram 
Pattern 
Matching 

128x128 model 
32x32 model 

Convolution (with overflow saturation) 3x3 
Image Rotation (bilinear interpolation) 

Processing Time with C80 
(running at 50 MHz) 

3.0 
10.0 
20.0 

9.5 
22 
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4.0 CONCLUSIONS 

In this Phase II, POC developed a GA-based decision making system of high dimensionality with 
high processing speed and robust optimization features. The proposed FEPGA technology has 
been demonstrated in a number of applications: Mathlink optimizer, Route optimizer, Genetic 
neural network, and Function optimizer. The genetic algorithm has also been implemented in a 
parallel computing environment, resulting in a considerable speedup. The above applications are 
just a few examples of how a genetic algorithm can be used. 

The convergence speed of a genetic algorithm can be further improved by implementing it in a 
distributed computing environment, in which the computing task is divided into multiple subtasks 
with lower workloads. The genetic algorithm will be independently applied to subtasks for fast 
optimization, and the final result will be tallied through variables in shared memory. Such an 
implementation is suitable for problem domains such as aerial combat simulation or any 
commercial games involving multiple players and requiring fast optimization. 
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APPENDIX 1 
GENETIC NEURAL NETWORK 



NeuroGen - 1 

' POC Genetic Neural Network 
' Neural Network Parameter Optimization Program 
' 12/96 - 10/97 
' Physical Optics Corporation 

Private Sub cmdExit_Click( 
End 

End Sub 

Private Sub cmdGo_Click() 

RunGeneticSearch 

End Sub 

Private Sub Form_Load() 
Dim Return_Code% 
'Mainl.Show 

BesrValue* = 1# 
Return_Code% = Initialize() 
Setup_Data 

End Sub 

Private Sub mnuAbout_Click() 
About.Show 

End Sub 

Private Sub mnuExit_Click() 
End 

End Sub 

Private  Sub mnuGaRun_Click() 
RunGeneticSearch 

End Sub 



Mainl 

POC NetCreator Main Module 
Nov 1996 - Jan 1997 

Private Sub cmdDone_Click() 
'Free the network from memory 
Ret% = Release_Network(Net_ID%) 
Net_ID% = -1  'to show that it is no longer valid 

unload Me 
End 

End Sub 

Private Sub cmdRedo_Click() 
Dim Return_Code% 

Mainl.txtError.Text = "        " 
Mainl.txtNumPass.Text = "       " 

' reset the data display 
For Record_Nbr% = 1 To Nbr_Records% + 1 

For Column_Nbr% = 1 To 4    ' Needs change later 
Mainl.gridStats.Row = Record_Nbr% 
Mainl.gridStats.Col = Column_Nbr% 
Mainl.gridStats.Text = "     " 

Next Column_Nbr% 
Next Record_Nbr% 

'Free the network from memory 
Ret% = Release_Network(Net_ID%) 
Net_ID% = -1  'to show that it is no longer valid 

Return_Code% = Initialize() 
Setup_Data 

End Sub 

Private Sub cmdTrain_Click() 
Build_Network 
Train_Network 

End Sub 

Private Sub Form_Load() 
Dim Return_Code% 

Return_Code% = Initialize() 
Setup_Data 

' set the row and column size 
For Record_Nbr% = 0 To Nbr_Records% + 1 

For Column_Nbr% = 1 To 4    ' Needs change later 
gridStats.RowHeight(Record_Nbr%) =4 60 
gridStats.ColWidth(Column_Nbr%) = 820 

Next Column_Nbr% 
Next Record_Nbr% 

gridStats.RowHeight(6) = 570 
gridStats.ColWidth(O) = 1000 

' display the input number 
For Record_Nbr% = 1 To Nbr_Records% 

Mainl.gridStats.Row = Record_Nbr% 
Mainl.gridStats.Col = 0 
Mainl.gridStats.Text = Record_Nbr% 

Next Record Nbr% 
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' display captions 
Mainl.gridStats.Row = Record_Nbr% 
Mainl.gridStats.Col = 0 
Mainl.gridStats.Text = "  Average       Error Rate" 

Mainl.gridStats.Row = 6 
Mainl.gridStats.Col = 0 
Mainl.gridStats.Text = "    TEST INPUT" 

Mainl.gridStats.Row = 0 
Mainl.gridStats.Col = 1 
Mainl.gridStats.Text = "1st Variable" 

Mainl.gridStats.Row = 0 
Mainl.gridStats.Col = 2 
Mainl.gridStats.Text = "2nd Variable" 

Mainl.gridStats.Row = 0 
Mainl.gridStats.Col = 3 
Mainl.gridStats.Text = "Output" 

Mainl.gridStats.Row = 0 
Mainl.gridStats.Col = 4 
Mainl.gridStats.Text = "Neural Output" 

End Sub 

Private Sub mnuFileItem_Click(Index As Integer) 
Select Case Index 

Case 0 
Unload Me 
End 

Case 2 
Mainl.PrintForm 

End Select 
End Sub 

Private Sub SSOptionl_Click() 
Net_Type% = BP 

End Sub 

Private Sub SS0ption2_Click() 
Net_Type% = TDNN 

End Sub 

Private Sub SS0ption3_Click() 
Net_Type% = CATNN 

End Sub 

Private Sub SS0ption4_Click() 
Net_Type% = PNN 

End Sub 

Private Sub SS0ption5_Click() 
Net_Type% = LVQ 

End Sub 

Private Sub tlbPrint_Click() 
Mainl.PrintForm 

End Sub 
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Option Explicit 

'Genetic Algorithm Dynamic Link Library Declarations 

Declare Function InitBinary Lib "GENE200.DLL" (ByVal StartingID%, ByVal EndingID%, ByVal Peg 
gedID%, ByVal HighLow%, ByVal StrandLen%, ChromeGene%, ChromeValue#) As Integer 

Declare Function Initlnt Lib "GENE200.DLL" (ByVal StartingID%, ByVal EndingID%, ByVal StartV 
al%, ByVal EndVal%, ByVal Unique%, ByVal PeggedGenel%, ByVal GenelVal%, ByVal StrandLen%, Chrome 
Gene%, ChromeValue#) As Integer 

Declare Function InitZero Lib "GENE200.DLL" (ByVal PopSize%, ByVal StrandLen%, ChromeGene%, 
ChromeValuett) As Integer 

Declare Function SelectPercent Lib "GENE200.DLL" (ByVal Percent*, ByVal HighLow%, ByVal PopS 
ize%, ChromeValuett, SurvivorList%) As Integer 

Declare Function SelectRoulette Lib "GENE200.DLL" (ByVal RoulOrder%, ByVal HighLow%, ByVal P 
opSize%, ChromeValue#, SurvivorList%) As Integer 

Declare Function RefillBinaryRand Lib "GENE200.DLL" (ByVal NumberOfSurvivors%, ByVal PopSize 
s, ByVal StrandLen%, ChromeGene%, ChromeValue#, SurvivorList%) As Integer 

Declare Function RefillClone Lib "GENE200.DLL" (ByVal NumberOfSurvivors%, ByVal PopSize%, By 
Val StrandLen%, ChromeGene%, ChromeValue#, SurvivorList%) As Integer 

Declare Function PairRandom Lib "GENE200.DLL" (ByVal PopSizel, ParentPair%) As Integer 
Declare Function MateTailSwap Lib "GENE200.DLL" (ByVal StrandLen%, ByVal NumPairs%, ChromeGe 

ne%, ParentPair%) As Integer 
Declare Function MateTwoCut Lib "GENE200.DLL" (ByVal PopSize%, ByVal StrandLen%, ByVal NumPa 

irs%, ChromeGene%, ParentPair%) As Integer 
Declare Function MateTwoCutSwap Lib "GENE200.DLL" (ByVal PopSize%, ByVal StrandLen%, ByVal N 

umPairs%, ChromeGene%(), ParentPair%) As Integer 
Declare Function MuteRandEx Lib "GENE200.DLL" (ByVal RandExRate#, ByVal PreserveGeneOne%, By 

Val PopSize%, ByVal StrandLen%, ChromeGene%) As Integer 
Declare Function MuteRev Lib "GENE200.DLL" (ByVal RandRevRate#, ByVal PreserveGeneOne%, ByVa 

1 PopSize%, ByVal StrandLen%, ChromeGene%) As Integer 
Declare Function Rand_List Lib "GENE200.DLL" (ByVal Nbr_Items%, Index_List%()) As Integer 

'These array's are dimensioned to 50 to allow room for more 
'cities if you like. 
Global DistanceArray(50, 50) As Integer 
Global IndexList(50) As Integer 
Global SequencedList(50) As Integer 
Global BestChrome(50) As Integer 

Global BestValue As Double 
Global FitnessValue As Double 
Global Net_Error As Double 
Global BestType As Integer 
Global BestHiddenNum As Integer 
Global BestFunction As Integer 

'NOTE: IMPORTANT 
'These arrays, with GENE200.DLL MUST be dimensioned in this manner 
Global ChromeGene%(0 To 174, 0 To 174) 
Global ChromeValue#(0 To 174) 
Global SurvivorList%(0 To 174) 
Global ParentPair%(0 To 174) 

'Misc other global variables 
Global NotFirstPass As Integer 
Global HighLow As Integer 
Global Const Nbr_Selected_Parameters = 3 

'Newly added global variables: Genetic Parameters 
Global Net_Type As Integer 
Global Nbr_Hiddens(3) As Integer 
Global Transfer Function(3) As Integer 
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Option Explicit 

#If Winl6 Then 
Declare Function Initialize Lib "NNW16212.dll" () As Integer 
Declare Function Build_BP Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal Nbr_Inputs 

As Integer, ByVal Nbr_Hidden_Layers As Integer, Nbr_Hiddens As Integer, Transfer_Function As Int 
eger, ByVal Nbr_Outputs As Integer) As Integer 

Declare Function Build_AT Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal Nbr_Inputs 
As Integer, ByVal Nbr_Hidden_Layers As Integer, Nbr_Hiddens As Integer, Transfer_Function As Int 
eger, Nbr_Connections As Integer, ByVal Max_Tau As Integer, ByVal Nbr_Outputs As Integer) As Int 
eger 

Declare Function Build_PNN Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal Nbr_Inputs 
As Integer, ByVal Nbr_of_Records As Integer, ByVal Nbr_Outputs As Integer) As Integer 

Declare Function Build_GRNN Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal Nbr_Input 
s As Integer, ByVal Nbr_of_Records As Integer, ByVal Nbr_Outputs As Integer) As Integer 

Declare Function Init_Weights Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal LowerJL 
imit#, ByVal Upper_Limit#) As Integer 

Declare Function Init_Taus Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal Lower_Limi 
t#, ByVal Upper_Limit#) As Integer 

Declare Function Propagate_BP Lib "NNW16212.dll" (ByVal Network_ID As Integer, Input_Array#, 
Desired_Output_Array#) As Integer 

Declare Function Propagate_AT Lib "NNW16212.dll" (ByVal Network_ID As Integer, Input_Array#, 
Desired_Output_Array#) As Integer 

Declare Function Propagate_PNN Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal sigmat 
, Input_Array#, Output_Array#) As Integer 

Declare Function Propagate_GRNN Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal sigma 
#, Input_Array#, Output_Array#) As Integer 

Declare Function Calc_Net_Error Lib "NNW16212.dll" (ByVal Network_ID As Integer, Desired_Out 
put_Array#) As Double 

Declare Function Train_BP Lib "NNW16212.dll" (ByVal Network_ID As Integer, Learn_Rate#, Mome 
ntum#) As Integer 

Declare Function Train_AT Lib "NNW16212.dll" (ByVal Network_ID As Integer, Learn_Rate#, Mome 
ntum#, Tau_Learn_Rate#, Tau_Momentum#, ByVal Commit_Changes As Integer) As Double 

Declare Function Train_PNN Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal Record_ID% 
, Input_Array#, Output_Array#) As Integer 

Declare Function Train_GRNN Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal Record_ID 
%, Input Arrayt, Output_Array#) As Integer 

Declare Function 
Declare Function 
Declare Function 

As Integer 
Declare Function 

As Integer 
Declare Function 

Integer) As Integer 
Declare Function 
Declare Function 

in#, ByVal log_mag#, 

Release_Network Lib "NNW16212.dll" (ByVal Network_ID As Integer) As Integer 
Release_All_Networks Lib "NNW16212.dll" () As Integer 
Save_Net Lib "NNW16212.dll" (ByVal FileName$, ByVal Network_ID As Integer) 

Load_Net Lib "NNW16212.dll" (ByVal FileName$, ByVal Network_ID As Integer) 

MoveNets Lib "NNW16212.dll" (ByVal 01d_Index As Integer, ByVal New_Index As 

GetNetID Lib "NNW16212.dll" () As Integer 
SetParameters Lib "NNW16212.dll" (ByVal Network_ID As Integer, ByVal log_ga 
ByVal tanh_gain#, ByVal tanh_mag#, ByVal lin_slope#) As Integer 

#ElseIf Win32 Then 
Declare Function Initialize Lib "NNW32212.dll" () As Integer 
Declare Function Build_BP Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal Nbr_Inputs 

As Integer, ByVal Nbr_Hidden_Layers As Integer, Nbr_Hiddens As Integer, Transfer_Function As Int 
eger, ByVal Nbr_Outputs As Integer) As Integer 

Declare Function Build_AT Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal Nbr_Inputs 
As Integer, ByVal Nbr_Hidden_Layers As Integer, Nbr_Hiddens As Integer, Transfer_Function As Int 
eger, Nbr_Connections As Integer, ByVal MaxJIau As Integer, ByVal Nbr_Outputs As Integer) As Int 
eger 

Declare Function Build_PNN Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal Nbr_Inputs 
As Integer, ByVal Nbr_of_Records As Integer, ByVal Nbr_Outputs As Integer) As Integer 

Declare Function Build_GRNN Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal Nbr_Input 
s As Integer, ByVal Nbr_of_Records As Integer, ByVal Nbr_Outputs As Integer) As Integer 

Declare Function Init_Weights Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal Lower_L 
imit#, ByVal Upper_Limit#) As Integer 

Declare Function InitJTaus Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal Lower_Limi 
t#, ByVal Upper_Limit#) As Integer 
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Declare Function Propagate_BP Lib "NNW32212.dll" (ByVal Network_ID As Integer, Input_Array#, 
Desired_Output_Array#) As Integer 

Declare Function Propagate_AT Lib "NNW32212.dll" (ByVal Network_ID As Integer, Input_Array#, 
Desired_Output_Array#) As Integer 

Declare Function Propagate_PNN Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal sigma# 
, Input_Array#, Output_Array#) As Integer 

Declare Function Propagate_GRNN Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal sigma 
#, Input_Array#, Output_Array#) As Integer 

Declare Function Calc_Net_Error Lib "NNW32212.dll" (ByVal Network_ID As Integer, Desired_Out 
put_Array#) As Double 

Declare Function Train_BP Lib "NNW32212.dll" (ByVal Network_ID As Integer, Learn_Rate#, Mome 
ntumt) As Integer 

Declare Function Train_AT Lib "NNW32212.dll" (ByVal Network_ID As Integer, Learn_Rate#, Mome 
ntum#, Tau_Learn_Rate#, Tau_Momentum#, ByVal Commit_Changes As Integer) As Double 

Declare Function Train_PNN Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal Record_ID% 
, Input_Array#, Output_Array#) As Integer 

Declare Function Train_GRNN Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal Record_ID 
%, Input_Array#, Output_Array#) As Integer 

Declare Function Release_Network Lib "NNW32212.dll" (ByVal Network_ID As Integer) As Integer 
Declare Function Release_All_Networks Lib "NNW32212.dll" () As Integer 
Declare Function Save_Net Lib "NNW32212.dll" (ByVal FileName$, ByVal Network_ID As Integer) 

As Integer 
Declare Function Load_Net Lib "NNW32212.dll" (ByVal FileName$, ByVal Network_ID As Integer) 

As Integer 
Declare Function MoveNets Lib "NNW32212.dll" (ByVal 01d_Index As Integer, ByVal New_Index As 

Integer) As Integer 
Declare Function GetNetID Lib "NNW32212.dll" () As Integer 
Declare Function SetParameters Lib "NNW32212.dll" (ByVal Network_ID As Integer, ByVal log_ga 

in#, ByVal log_mag#, ByVal tanh_gain#, ByVal tanh_mag#, ByVal lin_slope#) As Integer 
#End If 
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Option Explicit 

Global Net_ID As Integer     'a unique identifier for our neural network 
'Global Net_Type As Integer    'The type of network we're building (BP, TDNN, ...) 
Global Nbr_Records As Integer 

'Constants to make things clearer in code 
'Network Types 
Global Const BP = 0 
Global Const TDNN = 1 
Global Const CATNN = 2 
Global Const PNN = 3 
Global Const LVQ = 4 

'Transfer functions - 
Global Const LOGISTIC = 0 
Global Const TANH = 1 
Global Const LINEAR = 2 

'Network Architecture Variables 

'Data Arrays 
Global DataArrayO As Double  'An array to hold our data 

'We will dimension it in Build_Network function 
Global Test_Array#(2)     ' 'an array to hold a record of test input data 
Global Test_Output_Array#(1) 

Sub Build_Network() 

Dim Nbr_Inputs% 
Dim Nbr_Hidden_Layers% 
'ReDim Nbr_Hiddens%(3) 
'ReDim Transfer_Function%(3) 
ReDim Nbr_Connections%(3) 
Dim Max_Tau% 
Dim Nbr_Outputs% 
Dim Ret% 

'Let's set some network parameters... 
Nbr_Inputs% = 2 
Nbr_Hidden_Layers% = 1 
'Nbr_Hiddens%(1) =5 
'Nbr_Hiddens%(2) = 5 
Transfer_Function%(1) = TANH 
'Transfer_Function%(2) = LOGISTIC 
Nbr_Connections%(1) = 1 
Nbr_Connections%(2) = 1 
Max_Tau% = 10 
Nbr_Outputs% = 1 

Net_ID%   =  GetNetlDO 

If Net_ID% < 0 Then 
MsgBox "Error getting network ID", 48, "POC Network Generator" 

End If 

Select Case Net_Type% 
Case BP 

Ret% = Build_BP(Net_ID%, Nbr_Inputs%, Nbr_Hidden_Layers%, Nbr_Hiddens%(0) , Transfer_ 
Function%(0), Nbr_Outputs%) 

Case TDNN 
Ret% = Build_AT(Net_ID%, Nbr_Inputs%, Nbr_Hidden_Layers%, Nbr_Hiddens%(0), Transfer_ 

Function!(0), Nbr_Connections%(0), MaxJTau, Nbr_Outputs%) 
Case CATNN 

Ret% = Build_AT(Net_ID%, Nbr_Inputs%, Nbr_Hidden_Layers%, Nbr_Hiddens%(0), Transfer_ 
Function!(0), Nbr_Connections%(0), Max_Tau, Nbr_Outputs%) 

Case PNN 
Ret% = Build_PNN(Net_ID%, Nbr_Inputs%, Nbr_Records%, Nbr_Outputs%) 
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Case LVQ 
Ret% = Build_GRNN(Net_ID%, Nbr_Inputs%, Nbr_Records%, Nbr_Outputs%) 

End Select 
If Ret% < 0 Then 

MsgBox "Error building network", 48, "POC Network Generator" 
End If 

End Sub 

Sub Setup_Data() 
'Let's setup our data here, you may wish to use your own functions 
'to do this when building applications 
ReDim DataArray#(4, 3)  '4 rows, 3 columns (2 inputs, 1 output) 
Nbr_Records% = 4. 

'Let's put xor data in the array 
DataArray#(l, 1) = 1 
DataArray*(1, 2) =0 
DataArray#(l, 3) = 1 

DataArray*(2, 1) =0 
DataArray*(2, 2) = 1 
DataArray*(2, 3) = 1 

DataArray*(3, 
DataArray*(3, 
DataArray*(3, 

DataArray*(4, 
DataArray*(4, 
DataArray*(4, 

1) = 0 
2) = 0 
3) = 0 

1) = 1 
2) = 1 
3) = 0 

End Sub 

Sub Train Network() 

Dim Ret% 
Dim Passes As Long 
Dim Record_Nbr% 
Dim Column_Nbr% 
Dim error_fact* 
'Dim Net_Error# 
Dim Commit_Changes% 
Dim sigma* 
Dim cum error* 

'A variable to hold return codes 
'The number of passes through the data 
'A simple index of records 
'A simple index of columns 
'The mean squared error of BP/TDNN/CATNN network 
'The Average Absolute Error of the network 

'Whether to update weights this pass 
'The acuity factor for PNN's and LVQ's 
'An accumulation of error across all records 

ReDim Learn_Rate#(3) 
ReDim Momentum*(3) 
ReDim Tau_Learn_Rate#(3) 
ReDim Tau Momentum*(3) 

'The network learning rate 
'The network momentum rate 
'CATNN connection 'look back' learning rate 
'CATNN connection 'look back' momentum 

ReDim Input_Array#(2)       'an array to hold a record of input data 
ReDim Output_Array#(2)      'an array to hold a record of Output data 
ReDim Neural_Output_Array#(1)  'an array to hold the neural results 

Learn_Rate#(1) = 0.8 
Learn_Rate#(2) =0.4 
Momentum*(1) =0.2 
Momentum*(2) =0.1 
Commit_Changes% = 1 

'set hidden layer learning rate 
'set output layer learning rate 
'set hidden layer Momentum 
'set output layer Momentum 
'We're not doing epoch based learning, so always update weights 

Tau_Learn_Rate#(1) = 
problem 

Tau_Learn_Rate#(2) = 
Tau_Momentum#(1) = 0 
Tau_Momentum*(2) = 0 
error_fact# = 1000 
Net Error* = 1000 

'We're not updating CATNN connections, as this isn't a time base 

'some big value to start 
'some big value to start 
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PassesS = 0 
sigma# =0.01 

'Initialize Weights 
Ret% = Init_Weights(Net_ID, -0.3, 0.3) 
If Net_Type% = CATNN Or Net_Type% = TDNN Then 

Ret% = Init_Taus(Net_ID, -0.3, 0.3) 
End If 

' display of input and output 
For Record_Nbr% = 1 To Nbr_Records% 

For Column_Nbr% = 1 To 3    ' Needs change later 
Mainl.gridStats.Row = Record_Nbr% 
Mainl.gridStats.Col = Column_Nbr% 
Mainl.gridStats.Text = Format?(DataArray*(Record_Nbr%, Column_Nbr%), "0.0000") 

Next Column_Nbr% 
Next Record_Nbr% 

Do While (Net_Error# > 0.001 And Passes& < 1000)   'train until the error meets a criteria 
DoEvents 
PassesS = Passes& + 1 
cum_error# = 0 
For Record_Nbr% = 1 To Nbr_Records% 

'Load the current record into the Input and Output arrays 
Input_Array#(1) = DataArray*(Record_Nbr%, 1) 
Input_Array#(2) = DataArray*(Record_Nbr%, 2) 
Output_Array#(1) = DataArray*(Record_Nbr%, 3) 

'Propagate forward 
Select Case Net_Type% 

Case BP 
Ret% = Propagate_BP(Net_ID%, Input_Array#(0), Neural_Output_Array#(0) ) 

Case CATNN, TDNN 
Ret% = Propagate_AT(Net_ID%, Input_Array#(0), Neural_Output_Array#(0) ) 

Case PNN, LVQ 
'no need to propagate PNN, LVQ first during training 

End Select 
If Ret% <> 0 Then 

MsgBox "Error Propagating in NNWIN.DLL", 48, "POC Network Generator" 
End If 

'Calculate error 
Select Case Net_Type% 

Case BP, CATNN, TDNN 
error_fact# = Calc_Net_Error(Net_ID%, Output_Array#(0)) 
If error_fact# < 0 Then 

MsgBox "Error Calculating Network Error in NNWIN.DLL", 48, "POC Network 
Generator" 

End If 
Case Else 

'no need to calc net error for PNN/LVQ during training 
End Select 

Select Case Net_Type% 
Case BP 

Ret% = Train_BP(Net_ID%, Learn_Rate#(0), Momentum*(0)) 
Case TDNN, CATNN 

Ret% = Train_AT(Net_ID%, Learn_Rate#(0), Momentum*(0), Tau_Learn_Rate#(0) , T 
au_Momentum#(0), Commit_Changes%) 

Case PNN 
Ret% = Train_PNN(Net_ID%, Record_Nbr%, Input_Array#(0), Output_Array#(0) ) 

Case LVQ 
Ret% = Train_GRNN(Net_ID%, Record_Nbr%, Input_Array#(0), Output_Array#(0) ) 

End Select 
If Ret% < 0 Then 

MsgBox "Error building network", 48, "POC Network Generator" 
End If 
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0}) 

(0) ) 

'Propagate forward to get the network's prediction 
Select Case Net_Type% 

Case BP 
Ret% = Propagate_BP(Net_ID%, Input_Array#(0) , Neural_Output_Array#(0) ) 

Case CATNN, TDNN 
Ret% = Propagate_AT(Net_ID%, Input_Array#(0) , Neural_Output_Array#(0)) 

Case PNN 
Ret% = Propagate_PNN(Net_ID%, sigma#, Input_Array#(0), Neural_Output_Array#( 

Case LVQ 
Ret% = Propagate_GRNN(Net_ID%, sigma#, Input_Array#(0), Neural_Output_Array# 

End Select 
If Ret% <> 0 Then 

MsgBox "Error Propagating in NNWIN.DLL", 48, "POC Network Generator" 
End If 

'Calculate error 
cum_error# = cum_error# + Abs(Output_Array#(1) - Neural_Output_Array#(1)) 

'Mainl->GNN 
'NeuroGen.gridStats.Row = Record_Nbr% 
'NeuroGen.gridStats.Col = 4 
'NeuroGen.gridStats.Text = Format$(Neural_Output_Array#(1) , "0.0000") 

Next Record_Nbr% 

Net_Error# = cum_error# / Nbr_Records% 

'Show resulting error and the number of pass 
NeuroGen.txtError.Text = Format$(Net_Error#, "0.0000") 
NeuroGen.txtNumPass.Text = Str$(PassesS) 

'NeuroGen.gridStats.Row = 5 
'NeuroGen.gridStats.Col = 4 
'NeuroGen.gridStats.Text = Format$(Net Errort, "0.0000") 

Loop 

End Sub 
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Function CustomMutation(ByVal PreserveGeneOne%, ByVal PopSize%, ByVal StrandLength%_) 

'This is an example of a custom function that you can 
'build to compliment the GAWindows Library, customizing 
'for special cases and for "hybrid" applications 

'This mutation reverses pieces of chromosomes using "knowledge" 
'of distances ("domain knowledge") 

'Find the two highest intercity distances in each chromosome 
'Mutate every chromosome because this method is so effective! 

Static GeneSegment%(50) 
Static RevGeneSeq%(50) 

For i% = 1 To PopSize% 
'set the highest and second highest distances to the first one 
'just to have something to compare against 
HighestDist# = DistanceArrayl(IndexList%(ChromeGene%(i%, 1) -1), IndexList%(ChromeGenel 

(i%, 2) - 1)) 
SecondHighestDist# = DistanceArray%(IndexList%(ChromeGene%(i%, 1) -1), IndexList%(Chrom 

eGene%(i%, 2) - 1)) 

For j% = 1 To StrandLength% - 1 

'If highest distance is smaller than this distance 
If HighestDist* < DistanceArray%(IndexList%(ChromeGene%(i%, j%) - 1), IndexList%(Chr 

omeGene%(i%, j% + 1) - 1)) Then 
'then the current highest distance is now the second highest 
SecondHighestDist# = HighestDist# 
'and the first cut point in the chromosome is now the second 
CutPoint2 = CutPointl 
'and the new highest distance is this distance 
HighestDist# = DistanceArray%(IndexList%(ChromeGene%(i%, j%) - 1), IndexList%(Ch 

romeGene%(i%, j% + 1) - 1)) 
'and this is the new highest cut point 
CutPointl = j% 

End If 

If (SecondHighestDisti < DistanceArray%(IndexList%(ChromeGene% (i%, j%) - 1), IndexLi 
st%(ChromeGene%(i%, j% + 1) -1)) And (HighestDist* <> DistanceArray%(IndexList%(ChromeGene%(i%, 
j%) - 1), IndexList%(ChromeGene%(i%, j% + 1) - 1)))) Then 

SecondHighestDisti = DistanceArray%(IndexList%(ChromeGene%(i%, j%) - 1), IndexLi 
st%(ChromeGene%(i%, j% + 1) -1)) 

CutPoint2 = j% 
End If 

Next j% 

'Found the Highest and SecondHighest Intercity distances 
'Now order the outpoints along the chromosome 
If CutPointl <= CutPoint2 Then 

CutOne = CutPointl 
CutTwo = CutPoint2 

Else 
CutOne = CutPoint2 
CutTwo = CutPointl 

End If 

'Increment CutOne so as to "cut" on next boundary 
CutOne = CutOne + 1 

'Check for preservation of Gene 1 
If (CutOne = 1) And (PreserveGeneOne = 1) Then 

CutOne = 2 
End If 
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'Sometimes reverse to end of string just for fun 
If Rnd > 0.5 Then 

CutTwo = StrandLength% 
End If 

'Now extract the genes 
For j% = CutOne To CutTwo 

GeneSegment%(j% - CutOne) = ChromeGene(i%, j%) 
Next j% 

'Now reverse it 
For j% = 0 To (CutTwo - CutOne) 

RevGeneSeq%(j%) = GeneSegment%(CutTwo - CutOne - j%) 
Next j% 

'Now Stick it Back 
For j% = CutOne To CutTwo 

ChromeGene%(i%, j%) = RevGeneSeq%(j% - CutOne) 
Next j% 

Next i% 

End Function 

Function Fitness(PopSize As Integer, StrandLength As Integer) 

'Determine miles travelled for each chromosome in population 

For i% = 1 To PopSize%  'for each chrome in population 

'Calculate Total Miles (Chromosome's "Value") 
ChromeValue#(i%) = 0    'zero out the value of the chromosome 
For j% = 1 To StrandLength% - 1 

'accumulate the distances 
ChromeValue#(i%) = ChromeValue*(i%) + DistanceArray%(IndexList%(ChromeGene%(i%, j%) 

- 1), IndexList%(ChromeGene%(i%, j% + 1) -1)) 

Next j% 

Next i% 

'Look for lowest path so far 
If NotFirstPass% = 0 Then 

BestValue* = ChromeValue*(1) 
For j% = 1 To StrandLength% 

SequencedList%(j%) = ChromeGene%(1, j%) 
Next j% 
NotFirstPass% = 1 

End If 

For i% = 1 To PopSize% 
'if we're looking for the lowest and this chrome is lower than the lowest 
'or if we're looking for the highest and this chrome is higher than the highest 
If (HighLow = 0 And ChromeValue*(i%) < BestValue*) Or (HighLow = 1 And ChromeValue*(i%) 

> BestValue*) Then 
'Take this chromosome's distance as best 
BestValue* = ChromeValue*(i%) 
'and copy the chromosome to the desired sequence of cities to travel 
For j% = 1 To StrandLength% 

SequencedList%(j%) = ChromeGene%(i%, j%) 
Next j% 

End If 
Next i% 

'return the smallest distance 
Fitness = BestValue* 

End Function 
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Function RunGeneticSearch() As Integer 
'Show Hourglass 'cause we're busy! 
NeuroGen.MousePointer = 11  'EDITED 

'Set Genetic parameters 
PopSize% = Nbr_Selected_Parameters% * 4  'A good rule of thumb for this problem 
StrandLength% = Nbr_Selected_Parameters% 
GenerationLimit% = Nbr_Selected_Parameters% * 4 'another rule of thumb for TSP 
StartingID% = 1 
EndingID% = PopSize% 
StartVal% = 1 
EndVal% = StrandLength% 
Unique% = 0 
PeggedGeneOne% = 0 
GeneOneValue% = 0 
Percent* =0.5 
RandExRatett =0.5 
RandRevRate# =0.5 
PreserveGeneOne% = 1 

'A flag for determining if this is the first time through 
NotFirstPass% = 0 

'Make the world topsy turvey (scramble the random #'s) 
Randomize 

'Now build the population of integers of City ID's 
Result% = Initlnt%(l, PopSize%, 1, StrandLength%, Unique%, PeggedGeneOne%, GeneOneValue%, St 

randLength%, ChromeGene%(0, 0), ChromeValue#(0)) 

'Start the Genetic LifeCycle here 
Do While (Generations% < 1) 'GenerationLimit%) 

'Take Care of Business elsewhere in Windows 
Result% = DoEventsO 

For i% = 1 To PopSize% 
'Decode chromosome 
Net_Type% = ChromeGene%(i%, 1) - 1 
Select Case Net_Type% 

Case 0 
NeuroGen.txtNetTypel.BackColor = &HFFFF00 

Case 1 
NeuroGen.txtNetType2.BackColor = &HFFFF00 

Case 2 
NeuroGen.txtNetType3.BackColor = &HFFFF00 

End Select 

Select Case ChromeGene%(i%, 2) 
Case 1 

Nbr_Hiddens%(1) =3 
NeuroGen.txtNumHiddenl.BackColor = &HFFFF00 

Case 2 
Nbr_Hiddens%(1) =5 
NeuroGen.txtNumHidden2.BackColor = &HFFFF00 

Case 3 
Nbr_Hiddens%(l) = 7 
NeuroGen.txtNumHidden3.BackColor = &HFFFF00 

End Select 

Transfer_Function%(2) = ChromeGene%(i%, 3) - 1 
Select Case Transfer_Function%(2) 

Case 0 
NeuroGen.txtFunctionl.BackColor = &HFFFF00 

Case 1 
NeuroGen.txtFunction2.BackColor = &HFFFF00 

Case 2 
NeuroGen.txtFunction3.BackColor = &HFFFF00 

End Select 
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'TEST 
NeuroGen.txtDebugl.Text = Str$(Net_Type%) 
NeuroGen.txtDebug2.Text = Str$(Nbr_Hiddens%(1) ) 
NeuroGen.txtDebug3.Text = Str$(Transfer_Function%(2) ) 

Build_Network 
Train_Network 

'Evaluate Fitness 
'BestValue* = Fitness(PopSize%, StrandLength%) 
If Net_Error# < BestValue* Then 
BestValue# = Net_Error# 
BestType% = Net_Type% 
BestHiddenNum% = Nbr_Hiddens%(1) 
BestFunctionl = Transfer_Function%(2) 

End If 

Select Case BestType% 
Case 0 
NeuroGen.txtBestType.Text = "Back Propagation" 

Case 1 
NeuroGen.txtBestType.Text = "Time Delay" 

Case 2 
NeuroGen.txtBestType.Text = "Continuous Adaptive" 

End Select 

'NeuroGen.txtBestType.Text = Format$(BestType%, "0.0000") 

NeuroGen.txtBestNum.Text = BestHiddenNum% 

'NeuroGen.txtBestNum.Text = Format$(BestHiddenNum%, "0.0000") 

Select Case BestFunction% 
Case 0 
NeuroGen.txtBestFunction.Text = "Logistic Function" 

Case 1 
NeuroGen.txtBestFunction.Text = "Hyperbolic Tangent" 

Case 2 
NeuroGen.txtBestFunction.Text = "Linear Transfer" 

End Select 

'NeuroGen.txtBestFunction.Text = Format$(BestFunction%, "0.0000") 

NeuroGen.txtBestRate.Text = Format$(BestValue*, "0.0000") 

NeuroGen.txtNetTypel.BackColor = &HFFFFFF 
NeuroGen.txtNetType2.BackColor = &HFFFFFF 
NeuroGen.txtNetType3.BackColor = &HFFFFFF 
NeuroGen.txtNumHiddenl.BackColor = &HFFFFFF 
NeuroGen.txtNumHidden2.BackColor = &HFFFFFF 
NeuroGen.txtNumHidden3.BackColor = &HFFFFFF 
NeuroGen.txtFunctionl.BackColor = &HFFFFFF 
NeuroGen.txtFunction2.BackColor = &HFFFFFF 
NeuroGen.txtFunction3.BackColor = &HFFFFFF 

Next i% 

'Select survivors 
Nbr_Survivors% = SelectPercent%(Percent*, HighLow%, PopSize%, ChromeValue*(0), Survi 

vorList%(0)) 

'Refill Population 
Nbr_Chromes_Created% = RefillClone%(Nbr_Survivors%, PopSize%, StrandLength%, ChromeG 

ene%(0, 0), ChromeValue*(0), -SurvivorList%(0)) 

'Pair for Mating 
Nbr_Pairs% = PairRandom%(PopSize%, ParentPair(0)) 
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'Exchange Genes 
Nbr_Matings% = MateTwoCut%(PopSize%, StrandLength%, Nbr_Pairs%, ChromeGene%(0, 0), P 

arentPair%(0)) 

'Mutate 
Nbr_Mutations% = MuteRev%(RandRevRatei, PreserveGeneOne%, PopSizel, StrandLength%, C 

hromeGene%(0, 0)) 
Nbr_Mutations% = MuteRandEx%(RandExRate#, PreserveGeneOne%, PopSize%, StrandLength%, 

ChromeGene%(0, 0)) 
Nbr_Mutations% = CustomMutation(PreserveGeneOne%, PopSize%, StrandLength%) 

'Go back to evaluate 
Generations% = Generations! + 1 

Loop 

'Return best intercity distance found 
RunGeneticSearch = BestValue# 

'Put the mouse back to a pointer 
NeuroGen.MousePointer = 1 

End Function 
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APPENDIX 2 
DLL FOR MINIMIZATION GENETIC ALGORITHM 



DLL for minimization genetic algorithm 

/■> 

Last modified by J. Kim 6/97 
This version is a callable function minimize(f(),...) 
This version is optimized for low memory use: 

bits are packed instead of one per byte; 
storage is dynamically allocated as needed 

#include<Float.h> 
#include<stdio.h> 
#include<stdlib.h> 
#include<math.h> 
#include<string.h> 
tinclude <windows.h> 

♦include "minimize.h" 
#include "crash.h" 

// int initFKeyin( char *) ; 

int n,i,j , t, k, tt,pp,ngene, slength,geneval,nbit[11], rep = 0, cross; 
int p,int_rand,itt_rand, intm_pxval,it2_rand,intn,nb,nbold,ne,neold; 
double maximum2,minimum2,maximum,minimum, mold, minold,mold2,minold2; 
double gendec, diffmax, diffmin,fac; 
int cbit[200], beg[200], dbit; 
int maxparent[200],minparent[200],maxparent2[200],minparent2[200] ; 
int quot,rem,modd,func,imaxt, imint,imax2,imin2,roop; 
char string[10]; 
long mod[10]; 
int percent, kol; 
int nbrep, nerep, nbmut, nemut, nbmutval, nemutval, nbmutmin, nemutmin, 

nbmutmv, nemutmv, nbcross, necross; 

short wx, wy, xb, yb, lw, hw; 

ldiv_t result; 
div_t result2; 
div_t result3; 

void comparison(void); 
void fitfun(double f(double *)); 
void refitfun(double f(double *)); 
void maxl(void); 
void mini(void); 
void remaxl(void); 
void remin(void); 
void intpat(void); 
void reproduction(void); 
void mutation(void); 
void mutval(void); 
void mutmin(void); 
void mutminval(void); 
void crossover(void); 
void decigene(void); 
void max_min (double* ord); 
void crossoverl(void); 

int allocateGeneStorage(void); 
void freeGeneStorage(void); 

void setBitTo(int, int, int); 



voi'd setBit (int, int); 
void clearBit(int, int); 
void flipBit(int, int); 
int bit(int, int); 

void setChrof(int, int, double); 
void clearChrof(int, int); 
double chrof(int, int); 

void setFitness(int, double); 
double fitness(int); 

int numberOfVariables(void) ; 
double 

arguments[MAX_NUMBER_OF_ARGUMENTS], 
IowerBounds[MAX_NUMBER_OF_ARGUMENTS], 
upperBounds[MAX_NUMBER_OF_ARGUMENTS], 
tolerances[MAX_NUMBER_OF_ARGUMENTS]; 

// BEGINNING OF ADDITION 
#pragma argsused 
int CALLBACK LibMain (HANDLE hlnstance, 

WORD wDataSeg, 
WORD wHeapSize, 
LPSTR IpszCmdLine) 

{ 

} 

if (wHeapSize > 0) 
UnlockData(O); 

return 1; 

#pragma argsused 
int CALLBACK WEP (int nParameter) 
{ 

return 1; 
} 

int CALLBACK _export functionString( char far *functionString )  { 
return( initFKeyin( functionString ) ); 

// END OF ADDITION 

double chrofToArgument(int index,double chrofValue)  { 
if( mod[index] == 0 )  { 

crashint("minimize: Mod of %d is zero!",index); 
} 
return( IowerBounds[index] + 

(chrofValue / mod[index]) * (upperBounds[index]-IowerBounds[index]) 
); 

}_. 

double f(double *); 

void CALLBACK _export initializeMinimization( 
double passedLowerBounds[], 
double passedUpperBounds[], 
double passedTolerances[] 

)  { 
int i; 

inform("Inside  initializeMinimization"); 
ngene = numberOfVariables(); 
informlnt("initializeMinimization:   ngene:   %d",   ngene); 
for(   i=0;   i<ngene;   i++   )      { 

IowerBounds[i]   = passedLowerBounds[i]; 



upperBounds[i] = passedüpperBounds[i]; 
tolerances[i] = passedTolerances[i]; 

} 
inform("initializeMinimization: copied arrays"); 

/* This part determines the values of parameters such as 
the number of genes, the number of bits per gene and chromosomes. */ 

fac = 1.5; 
cross = 5; 

for( i=0; i<ngene; i++ ) 
nbit[i] = log((upperBounds[i]-lowerBounds[i])/tolerances[i]) / log(2.0) + 1; 

slength=0; 
f or (   i=0;   Kngene;   i++   ) 

slength += nbit[i]; 

if(   allocateGeneStorage ()   )     exit(l); 

for( j=0; j<ngene; j++ )  { 
mod[j]=l; 
for( i=0; i<nbit[j]; i++ ) 
mod[j]=mod[j]*2; 

} 
/* This part initializes all the matrix elements 

with logic value "0".- */ 

it2_rand=rand(); 
result3=div(it2_rand,14); 
intn=result3.rem+10; 

intn=100; 

f or ( i=0; Kintn; i++ ) 
for( j=0; j<slength; j++ ) 

clearBit(i,j) ; 

/* This part generates eight randomly selected 
initial genes. */ 

for( i=0; i<intn; i++ ) 
for( j=0; j<ngene; j++ ) 

clearChrof(i,j); 

for( i=0; Kintn; i++ ) 
for( j=0; j<ngene; j++ )  { 

int_rand=rand(); 
result=ldiv((long)int_rand,mod[j]); 
setChrof(i, j, (double)result.rem); 

} 
/* This part evaluates all matrix elements */ 

intm_pxval=0; 

for( i=0; i<intn; i++ )  { 
intm_pxval=0; 
for( j=0; j<ngene; j++ )  { 

geneval = (int)chrof(i,j); 
for( t=0; t<nbit[j]; t++)  { 

k=intm_pxval + t; 
result=ldiv((long)geneval,(long)2); 
setBitTo(i,k, (int)result.rem); 
geneval=(int)result.quot,• 
if( t==nbit[j]-l ) 
intm_pxval=intm_pxval+nbit[j ] ; 

fitfun(f); 



maxi(); 
mini(); 
intpat (); 
mold = maximum; 
minold = minimum; 
mold2 = maximum2; 
minold2 = minimum2; 

doing mutation"; 

int CALLBACK _export iterateMinimization( int properties [8] )  { 
// Answer 0 for normal, 1 for done, 2 or greater for erroneous return 
int doFuzzyLogic = 1; 

inform("Inside iterateMinimization"); 
nb=0 ; 
ne=0; 
reproduction(); 
comparison(); 
if( doFuzzyLogic )  { 

if (dbit <= (int)(slength/fac))  { 
inform("iterateMinimization: doing crossover"); 

crossover(); 
crossoverl(); 
decigene(); 
refitfun(f); 
remaxl(); 
remin(); 
intpat (); 

}  else  { 
inform("iterateMinimization: 

mutation(); 
mutval(); 
mutmin(); 
mutminval(); 
decigene(); 
refitfun(f); 
remaxl(); 
remin(); 
intpat(); 

} 
}  else  { 

crossover(); 
crossoverl(); 
mutation(); 
mutval(); 
mutmin(); 
mutminval(); 
decigene(); 
refitfun(f); 
remaxl(); 
remin(); 
intpat(); 

} 
properties[0] = nb; 
properties[1] = ne; 
properties[2] = nbcross; 
properties[3] = necross; 
properties[4] = nbrep; 
properties[5] = nerep; 
properties[6] = nbmut; 
properties[7] = nemut; 
inform("iterateMinimization: set properties"); 

if ((maximum == mold) && (minimum == minold) && 
(imaxt == 0) && (imint == 2) && (imax2 == 1) && (imin2 

return 1; 
3))  { 



.mold =.  maximum; 
minold = minimum; 
mold2 = maximum2; 
minold2 = minimum2; 
return 0; 

} 

void CALLBACK _export getResults( 
double locationOfMinimum[], double* valueAtMinimum, 
double locationOfMaximum[], double* valueAtMaximum 

)  { 
int i ; 

*valueAtMinimum = minimum; 
*valueAtMaximum = maximum; 
for( i=0; i<ngene; i++ )  { 

locationOfMinimumfi] = chrofToArgument(i,chrof(imint,i)); 
locationOfMaximumfi] = chrofToArgument(i,chrof(imaxt, i)) ; 

} 
} 

VOID CALLBACK _export terminateMinimization(void)  { 
freeGeneStorage(); 

void loadFitnessesTo(int loadSize, double f(double *))  { 
for( i=0; i<loadSize; i++ )  { 

for( j=0; j<ngene; j++ ) 
arguments[j] = chrofToArgument(j,chrof(i,j)); 

setFitness(i,f(arguments)); 
} 

} 

void fitfun(double f(double *))  { 
loadFitnessesTo(intn, f); 

} 

void refitfun(double f(double *))  { 
loadFitnessesTo(ne,f); 

} 
void maxl(void) 
{ 

maximum=fitness(1); 
imaxt=0; 
for ( i=0; i<intn; i-r+ ) 

{ 

if (fitness(i)>=maximum) 
{ 
maximum=fitness(i); 
imaxt=i; 

} 
else 

{ 
maximum=maximum; 

} 

if (imaxt==0) 

maximum2=fitness(1); 
imax2=l; 

else 

maximum2=fitness(0); 
imax2=0; 



fort i-0; Kintn; i++ ) 
{ 
if (fitness(i)>maximum2 && fitness(i)!=maximum && i != imaxt) 

{ 
maximum2=fitness(i); 
imax2=i; 

eise 

maximum2=maximum2; 

} 

{ 

} 

'/oid remaxi (void) 

imaxt = 0; 
maximum = fitness (0); 
for( i=0; i<ne; i++){ 

if (fitness(i) > maximum) 
{ 
maximum = fitness(i); 
imaxt = i; 

} 
else if (fitness(i) == maximum) 

imaxt = imaxt; 
maximum=fitness (i) ; 

eise 
{ 
imaxt=imaxt; 
maximum—maximum; 

{ 

} 

if (imaxt==0) 

eise 

for( 

{ 

} 

maximum2=fitness(1) ; 
imax2=l; 

maximum2=fitness (0) ; 
imax2=0; 

i=0; i<ne; i++ ) 

if (fitness(i)>maximum2 && fitness(i)!=maximum) 

maximum2=fitness(i) ; 
imax2=i; 

eise 
{ 
maximum2=maximum2; 

void mini(void) 
{ 

imint = 2; 
minimum = maximum; 



•for 

if 

else 

for 

i-=0; i<intn; i++ 
{ 
if (fitness(i)<=minimum) 

minimum=fitness(i); 
imint=i; 

else 

imint=imint; 
min imum=mi n imum; 

imint==0) 

minimum2=fitness(1); 
imin2=l; 

minimum2=fitness(0); 
imin2=0; 

i=0; i<intn; i++ ) ■ 

if (fitness(i)<minimum2 && fitness(i)!=minimum) 

minimum2=fitness(i); 
imin2=i; 

else 

imin2=imin2; 
minimum2=minimum2; 

} 

void remin(void) 
{ 

imint=0; 
minimum = maximum; 
for( i=0; i<ne; i++){ 

if (fitness(i)<minimum){ 
minimum=fitness(i); 
imint=i; 

else if(fitness(i)==minimum){ 
minimum=fitness(i); 
imint=imint; 

else{ 
minimum=minimum; 
imint=imint; 

} 

} 

} 

} 

if (imint==0){ 
minimum2=fitness(1); 
imin2=l; 

else! 



minimum2=fitness (0) ; 
imin2=0; 

} 

for( i=0; i<ne; i++){ 
if (fitness(i)<minimum2 && fitness(i)!=minimum){ 
minimum2=fitness(i) ; 
imin2=i; 

} 
else{ 
minimum2=minimum2; 
imin2 = imin2; 

} 
} 

} 

void intpat(void) 
{ 

for( j=0; j<slength; j++ ) 
{ 
maxparent[j] = bit(imaxt,j); 
minparent[j] = bit(imint,j); 
maxparent2[j] = bit(imax2,j); 
minparent2 [ j ] = bit.(imin2, j ) ; 

} 

void reproduction(void) 

/* This part of program is to perform the reproduction of the maximum 
fitness chromesome */ 

nb=0 ; 
ne=4 ; 
neold=0; 
nbold=0; 
for( j=0; j<slength; j++ ) 

{ 
setBitTo(0,j,maxparent[j]); 
setBitTo(1,j,maxparent2[j]); 
setBitTo(2,j,minparent[j]); 
setBitTo(3,j,minparent2[j]); 
} 

nbrep = nb; 
nerep = ne; 
nbold=nb; 
neold=ne; 

void mutation(void) 
{ 

/* This part of program is to perform mutation of the maximum 
fitness chromesome */ 

nb=neold; /* fred */ 
ne=neold+slength; 

for( i=nb; i<ne; i++) 
{ 
for( j=0; j<slength; j++ ) 

setBitTo(i,j, 
(i-neold != j) ? maxparent [j] _: !bit(0,j)); 

} 
nbmut = nb; 



nbold=nb; 
neold=ne; 
nb=neold; 
ne=neold+slength; 

for( i=nb; i<ne; i++ ) 
for( j=0; j<slength; j++ ) 

setBitTo (i,j, 
(i-neold != j) ? maxparent2[j] : !bit(l,j; 

nbold=nb; 
neold=ne; 
nemut = ne; 

void mutval(void) 
{ 

/* This part of program is to perform mutation of the maximum 
fitness chromesome */ 

int denom; 

nb=neold; 
ne=neold+slength; 

for( i=nb; i<ne; i++ ) 
for( j=0; j<slength; j++ ) 

setBitTo(i,j,maxparent[ j ] ) ; 

for( i=nb; i<ne; i++ )  { 
it2_rand=rand(); 
result3=div(it2_rand,3); 
n=result3.rem+1; 
int_rand=rand(); 
denom = slength-n-1; 
denom = (denom<l ? 1 : denom); 
result=ldiv((long)int_rand,(long)denom); 
p=(int)result.rem+1; 

for( j=i-neold; j<=i-neold+n; j++ )   /* fred ? */ 
flipBit(i,j); 

} 
nbmutval = nb; 

nbold=nb; 
neold=ne; /* fred */ 
nb=neold; 
ne=neold+slength; 

for(   i=nb;   i<ne;   i++   ) 
for(   j=0;   j<slength;   j++) 

setBitTo(i,j,maxparent[j]); 
tt=0; 
for(   k=0;   k<ngene;   k++   )      { 

for(   i=nb+tt;   i<=nb+tt+nbit[k];   i++   ) 
for(   j=tt;   j<i-neold;   j++) 

flipBit(i,j); 
tt=tt+nbit[k]; 

} 
nbold=nb; 
neold=ne; 
nemutval  = ne; 

void mutmin(void) 
{ 



</* This part of program is to perform mutation of the maximum 
fitness chromesome */ 

nb=neold; /* fred */ 
ne=neold+slength; 
nbmutmin = nb; 

for( i=nb; i<ne; i++ ) 
for( j=0; j<slength; j++ ) 

setBitTo(i,j, 
(i-neold != j) ? minparent[j] : !bit(2,j)); 

nbold=nb; 
neold=ne; 
nb=neold; 
ne=neold+slength; 

for( i=nb; i<ne; i++ ) 
for( j=0; j<slength; j++ ) 

setBitTo'(i,j, 
(i-neold != j) ? minparent2[j] : !bit(3,j)); 

nbold=nb; 
neold=ne; 
nemutmin = ne; 

} 

void mutminval(void) 
{ 

/* This part of program is to perform mutation of the maximum 
fitness chromesome */ 

int denom; 

nb=neold; 
ne=neold+slength; 
nbmutmv = nb; 

for( i=nb; i<ne; i++ ) 
for( j=0; j<slength; j++ ) 

setBitTo(i,j,minparent[ j ] ) ; 

for( i=nb; i<ne; i++ )  { 
it2_rand=rand(); 
result3=div(it2_rand,3); 
n=result3.rem+1; n=2; 
int_rand=rand(); 
denom = slength-n-1; 
denom = (denom<l ? 1 : denom); 
result=ldiv((long)int_rand,(long)denom); 
p=(int)result.rem+1; 
for( j=i-neold; j<=i-neold+n; j++ ) 

flipBitfi,j); 
} 
nbold=nb; 
neold=ne; 
nb=neold; 
ne=neold+slength; 

for(   i=nb;   i<ne;   i++   ) 
for(   j=0;   j<slength;   j++   ) 

setBitTo(i,j,minparent[j]); 

tt=0; 
for( k=0; k<ngene; k++ )  { 

for( i=nb+tt; i<=nb+tt+nbit[k]-1; i++ ) 
for( j=tt; j<i-neold; j++ ) 

flipBit(i,j); 
tt=tt+nbit[k]; 

} 



nbold=nb; 
neold=ne; 
nemutmv = ne; 

} 

void crossoverl(void) 
{ 

int  k, beg, p, q, pp; 
div_t result; 
int denom; 

for( pp = 1; pp<10; pp++ )  { 
result = div(rand(), cross); 
q = result.rem + 1; 

denom = slength-q-1; 
denom = (denom<l ? 1 : denom); 
result = div(rand(), denom); 
p = result.rem; 

nb = neold; 
i = nb; 

/*  CROSSOVER OF MAX and MAX2 */ 

for( beg = 0; beg < slength - q + 1; beg++ )  { 
k = p; 
for( j = 0; j < slength; j++ ) 

setBitTo(i,j, 
(j < beg || j >= beg + q) ? maxparent[j] : maxparent2[k++]); 

i++; 
k = beg; 
for( j = 0; j < slength; j++) 

setBitTo(i,j, 
(j < P I I j >= P + q) ? maxparent2[j] : maxparent[k++]); 

i++; 
} 
ne = i;      /* fred? */ 

neold = ne; 
nbold = nb; 

/*  CROSSOVER OF MIN and MIN2 */ 

for( beg = 0; beg < slength - q + 1; beg++)  { 
k = p; 
for( j = 0; j < slength; j++ ) 

setBitTo(i,j, 
(j < beg I I j >= beg + q) ? minparent[j] : minparent2[k++]); 

i++; 
k = beg; 
for( j =0; j < slength; j++ ) 

setBitTo(i,j, 
(j < p I I j >= p + q) ? minparent2[j] : minparent[k++]); 

i++; 

} 
ne = i; 

} 
neold = ne; 
nbold = nb; 



void cros'sover (void) 
{ 

/* This part of program is to perform the corssover between the maximum 
fitness chromesome and the minimum fitness chromesome */ 

int denom; 

nb=neold; 
ne=neold+80; 
nbcross = nb; 

for( i=nb; i<ne; i=i+2 )  { 
itt_rand=rand(); 
result2=div(itt_rand,cross); 
n=result2.rem+1; 
int_rand=rand(); 
denom = slength-n-1; 
denom = (denom<l ? 1 : denom); 
result=ldiv((long)int_rand,(long)denom); 
p=(int)result.rem; 
for( j =0; j < kol; j++ ) 

if (p == beg[i]) 
if ((p + cbit[i]) > slength) 

p -= cbit[j]; 
else 

p += cbit[j]-; 

for( j=0; j<slength; j++ ) 
if (p <= j && j < p+n)  { 

setBitTo(i, j,maxparent[j]); 
setBitTo(i+l,j,maxparent2[j] ) ; 

}  else  { 
setBitTo(i,j,maxparent2[j]); 
setBitTo(i+1,j,maxparent[j]); 

} 
} 

nbold=nb; 
neold=ne; 
nb=neold; 
ne=neold+100; 

for( i=nb; i<ne; i=i+2 )  { 
itt_rand=rand(); 
result2=div(itt_rand,cross); 
n=result2.rem+1; 
int_rand=rand(); 
denom = slength-n-1; 
denom = (denom<l ? 1 : denom); 
result=ldiv((long)int_rand,(long)denom); 
p=(int)result.rem; 
for( j=0; j<slength; j++ ) 

if (p <= j && j < p+n)  { 
setBitTo(i,j,minparent[j]); 
setBitTo(i+1,j,minparent2[j]); 

}  else  { 
setBitTo(i,j,minparent2[j]); 
setBitTo(i+1,j,minparent[j]); 

} 
} 
nbold=nb; 
neold=ne; 
necross = ne; 

void decigene(void) 
{ 



int kb„ ke; 
/* This part is to converet binary to decimal for each gene */ 

for( i=0; i<ne; i++) 
for( j=0; j<ngene; j++ ) 

clearChrof(i, j); 

for( i=0; i<ne; i++ )  { 
kb = 0; 
for( j=0; j<ngene; j++ )  { 

gendec=0.0; 
ke = nbit[j] + kb; 
for( k = kb; k < ke; k++ )  { 

gendec=(double)bit(i,k) * pow((double)2.0, 
(double)(k-kb)); 

setChrof(i,j,chrof(i,j) + gendec); 
} 
kb += nbit[j]; 

} 
i 

void comparison(void) 
{ 

int count, jbeg, flag = 0; 

i = 0; 
cbitfi] = 0; 
count = 0; 
dbit = 0; 

for( j =0; j < slength; j++ )  { 
if (bit(imaxt,j) == bit(imax2,j))  { 

dbit++; 
count++; 
if (flag == 0) 

jbeg = j; 
flag = 1; 

}  else if (count >= 2)  { 
cbit[i] = count; 
count = 0; 
beg[i] = jbeg; 
jbeg = 0; 
i++; 
flag = 0; 

}  else  { 
jbeg = 0; 
count = 0; 
flag = 0; 

} 
} 

if ( count >= 2)  { 
cbit[i] = count; 
beg[i] = jbeg; 
i++; 

} 
kol = i; 
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APPENDIX 3 
GA GUI FOR DYNAMIC LINK LIBRARY 



/* Windows application program with Graphical User Interface 
that uses GA DLL routines. 
Revised and finalized by J. Kim, August 1997. 
Physical Optics Corporation, All Rights Reserved.   */ 

#define STRICT 
#include <windows.h> 
#include <windowsx.h> 
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include <math.h> 
#include "dlltest.h" 
#include "minimize.h" 
// #include "newdll.h" 
#pragma warning (disable: 4068) 

static char szAppName[] = "GA"; 
static HWND MainWindow; 
static HINSTANCE hlnstance; 
int iSelect = 0;   // index of list box selection 
char IpszBuffer[80], szNumGeneBuffer[80]; 

PSTR aList[] = {"-xlA2 + 2*xl + 1", "xlA2 - 2*xl + 1", "2*sin(xl) + cos(xl)"}; 

// The program starts here.' The Window is registered 
// and created and the message translation is called. 
tpragma argsused 
int PASCAL WinMain(HINSTANCE hlnst, HINSTANCE hPrevInstance, 

LPSTR IpszCmdParam, int nCmdShow) 
{ 
MSG Msg; 

:f   (IhPrevInstance) 
ir v!Register(hlnst)) 

return FALSE; 

MainWindow = Create(hlnst, nCmdShow); 
if (!MainWindow) 

return FALSE; 
while (GetMessage(&Msg, NULL, 0, 0)) 
{ 
TranslateMessage(&Msg); 
DispatchMessage(&Msg); 

} 

} 
return Msg.wParam; 

// Registration of Window class 
BOOL Register(HINSTANCE hlnst) 
{ 
WNDCLASS WndClass; 

WndClass.style        = CS_HREDRAW | CS_VREDRAW; 
WndClass.lpfnWndProc  = WndProc; 
WndClass.cbClsExtra   = 0; 
WndClass.cbWndExtra   =0; // DLGWINDOWEXTRA; // required for dig window 
WndClass.hlnstance    = hlnst; 
WndClass.hlcon        = Loadlcon(NULL, IDI_APPLICATION); 
WndClass.hCursor      = LoadCursor(NULL, IDC_ARROW); 
WndClass.hbrBackground = GetStockBrush(WHITE_BRUSH); 
WndClass.IpszMenuName  = "GA";  // Window won't be created w/o this. 
WndClass.IpszClassName = szAppName; 

return RegisterClass (SWndClass); 
} 



/ Creation of Window 
;iWND Create (HINSTANCE hlnst, int nCmdShow) 

HWND hwnd; 
HDC hDC; 

hlnstance = hlnst; 

// HWND hwnd = CreateDialog(hlnst, szAppName, 0, NULL); 
hwnd = CreateWindow(szAppName, "Genetic Algorithm DLL TEST", 

WS_OVERLAPPEDWINDOW, 
CW_USEDEFAULT, CWJJSEDEFAULT, 
CW_USEDEFAULT, CW_USEDEFAULT, 
NULL, NULL, hlnst, NULL); 

if (hwnd == NULL) 
return hwnd; 

// MIL: Write your one-time initialization code here 
mi i illinium i mi IIIIIIIIII inn i in mi i IIIIIIIIIIIIIIIIIIII ii 11 ill 
II  Allocate an application 
MappAlloc(M_DEFAULT, SMilApplication); 
// Disable MIL error message to be displayed as the usual way 
MappControl(M_ERROR, M_PRINT_DISABLE); 
// Retrieve previous hanler ptr and user handler ptr 
Mapplnquire(M_CURRENT_ERROR_HANDLER_PTR,SHandlerPtr); 
Mapplnquire(M_CURRENT_ERROR_HANDLER_USER_PTR,SHandlerUserPtr); 
// Hook MIL error on function DisplayError() 
MappHookFunction(M_ERROR_CURRENT,DisplayErrorExt,this); 
// Allocate a system 
MsysAlloc(M_SYSTEM_SETUP,M_DEF_SYSTEM_NUM,M_COMPLETE,&MilSystem); 

ShowWindow(hwnd, nCmdShow); 
UpdateWindow(hwnd) ; 

hDC = GetDC(hwnd); 
SetBkColor( hDC, RGB(0, 255, 255) ) ; 
TextOut(hDC, 61, 210, "locationOfMinimum:     " , 23); 
ReleaseDC(hwnd, hDC); 

return hwnd; 
} 

// Message translation module 

LRESULT CALLBACK _export WndProc(HWND hwnd, UINT Message, 
WPARAM wParam, LPARAM lParam) 

{ 
switch(Message) 
{ 
HANDLE_MSG(hwnd, WM_CREATE, ga_OnCreate); 
HANDLE_MSG(hwnd, WM_DESTROY, ga_OnDestroy); 
HANDLE_MSG(hwnd, WM_COMMAND, ga_OnCommand); 
HANDLE_MSG(hwnd, WM_PAINT, ga_OnPaint); 
default: 

return ga_DefProc(hwnd, Message, wParam, lParam); 
} 

} 

♦pragma argsused 
BOOL ga_OnCreate(HWND hwnd, CREATESTRUCT FAR* lpCreateStruct) 
{ 

int i ; 
static char *Titles[] = {"minimize", "maximize"}; 



static char *Params[] = {"-10.0", "10.0", "0.1"}; 
static char *ParamInfo[] = {"lowerBounds", "upperBounds", "tolerance"}; 
static char *ProgramInfo[] = {"Num Of Genes:", "Num Of GeneBit:", 

"Chromosome Length:"}; 

hListBoxTitle = CreateWindow("static", "FunctionString LIST", 
WS_CHILD | WS_VISIBLE | WS_BORDER | SS_CENTER, 
50, 50, 200, 20, hwnd, NULL, 
hlnstance, NULL); 

hParamlnfoTitle = CreateWindow("static", "Parameters INFO", 
WS_CHILD | WS_VISIBLE | WS_BORDER | SS_CENTER, 
300, 50, 240, 20, hwnd, NULL, 
hlnstance, NULL); 

hOutputTitle = CreateWindow("static", "Optimized Value", 
WS_CHILD | WS_VISIBLE | WS_BORDER | SS_CENTER, 
51, 180, 198, 20, hwnd, NULL, 
hlnstance, NULL); 

for   (i=0;   i<3;   i++) 
hParamInfo[i]   = CreateWindow("static",   Paramlnfo[i], 

WS_CHILD   |   WS_VISIBLE   |   WS_BORDER   |   SS_CENTER, 
300,   70   +   i*20,   140,   20,   hwnd,   NULL, 
hlnstance,   NULL); 

for   (i=0;   i<3;   i++) 
hProgrammerlnfoTitle[i]   =  CreateWindow("static",   Programlnfo[i] , 

WS_CHILD   |   WS_VISIBLE   |   WS_BORDER   |   SS_CENTER, 
300,   220   +   i*20,   140,   20,   hwnd,   NULL, 
hlnstance, NULL); 

/* 
for (i=0; i<3; i++) 
hProgrammerInfo[i] = CreateWindow("static", NULL, 

WS_CHILD | WS_VISIBLE | WS_BORDER | SS_CENTER, 
300 + 140, 220 + i*20, 100, 20, hwnd, NULL, 
hlnstance, NULL); 

*/ 
hListBox = CreateWindow("listbox", NULL, 

WS_CHILD | WS_VISIBLE | LBS_STANDARD, 
51, 70, 198, 80, hwnd, ID_LISTBOX, 
hlnstance, NULL); 

hOkButton = CreateWindow("button", "OPTIMIZE", 
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON, 
51, 280, 120, 40, hwnd, ID_OK, 
hlnstance, NULL); 

for (i=0; i<3; i++) 
hEditBox[i] = CreateWindow("edit", Params[i], 

WS_CHILD | WS_VISIBLE | WS_BORDER | ES_CENTER, 
440, 70 + (i*20), 100, 20, hwnd, NULL, 
hlnstance, NULL); 

hGroupBox = CreateWindow("button", "Optimization Mode", 
WS_CHILD | WS_VISIBLE | BS_GROUPBOX, 
300, 150, 240, 50, hwnd, NULL, 
hlnstance, NULL); 

Buttonwindows[0] = CreateWindow("button", Titles[0], 
WS_CHILD | WS_VISIBLE | BS_AUTORADIOBUTTON | 
WS_TABSTOP, 
320, 170, 90, 20, 
hwnd, ID_MINIMAX, 
hlnstance, NULL); 

Buttonwindows[1] = CreateWindow("button", Titles[1], 
WS_CHILD | WS_VISIBLE | BS_AUTORADIOBUTTON 

I WS_GROUP, 
300 + 120, 170, 90, 20, 
hwnd, ID_MINIMAX + 100, 
hlnstance, NULL); 

for (i=0; i<3; i++) 
SendMessage(hListBox, LB_ADDSTRING, 0, 

(LPARAM)((LPCSTR)aList[i])); 



SendMessagethListBox, LB_SETCURSEL, 0, 0L); 

Button_SetCheck( ButtonWindows[0], TRUE ); 

return TRUE; 

#pragma argsused 
void ga OnDestroy(HWND hwnd) 
{ 

} 
PostQuitMessage(0) ; 

fpragma argsused 
void ga_OnCommand(HWND hwnd, int id, HWND hwndCtl, 

UINT codeNotify) 
{ 

char functionStr[80] , strl[80], str2[80], str3[80]; 
double lowerBounds[1] ; 
double upperBounds[1] ; 
double tolerances[1]; 
int result, done = 0, finalResult = 0; 
int props[8]; 
double locationOfMinimumfl], locationOfMaximum[l] ; 
double valueAtMinimum, valueAtMaximum; 
double optimumLoc; 
// char   *minStr; 
int ngene, chromelength; 
HDC hDC; 
// int dec, sign, ndig = 5; 

switch(id) 
{ 
case ID_OK: 

iSelect = (int)SendMessage(hListBox, LB_GETCURSEL, 0, 0L) 
SendMessage(hListBox, LB_GETTEXT, iSelect, functionStr); 

GetWindowText(hEditBox[0], strl, 10) 
GetWindowText(hEditBox[l], str2, 10) 
GetWindowText(hEditBox[2], str3, 10) 

lowerBounds[0] = atof( strl ) 
upperBounds[0] = atof( str2 ) 
tolerances[0] = atof ( str3 ) 

functionString(functionStr); 

ngene = numberOfVars(); 
wsprintf(szNumGeneBuffer, " 

// 10.0; 
// 0.1; 

%u", ngene); 

initializeMinimization(lowerBounds, 
upperBounds, 
tolerances); 

while (!done) { 
result = iterateMinimization( props 
if ( result == 2 ) { 

finalResult = -1; 
done = 1; 

} 
else if ( result == 1 ) { 

done = 1; 
} 

} 
// if ( finalResult != 0 ) 
//   return ( finalResult ); 



getResults( locationOfMinimum, SvalueAtMinimum, 
locationOfMaximum, SvalueAtMaximum ); 

if ( OptMode == MINIMIZE ) { 
optimumLoc = locationOfMinimum[0]; 
wsprintf(IpszBuffer, "locationOfMinimum: %d", (int)optimumLoc); 

} 
else if ( OptMode == MAXIMIZE ) { 

optimumLoc = locationOfMaximum[0]; 
wsprintf(IpszBuffer, "locationOfMaximum: %d", (int)optimumLoc); 

} 
else { 

wsprintf(IpszBuffer, "Do Nothing!!!", NULL); 

// SetWindowText(hEditBoxl, IpszBuffer); 

terminateMinimization(); 

InvalidateRect(hwnd, NULL, TRUE); 
break; 

case ID_MINIMAX: 
OptMode = MINIMIZE; 

hDC = GetDC(hwnd); 
SetBkColor( hDC, RGB(0, 255, 255) ) ; 
TextOut(hDC, 61, 210, "locationOfMinimum: 
ReleaseDC(hwnd, hDC); 

break; 

", 23); 

case ID_MINIMAX + 100: 
OptMode = MAXIMIZE; 

hDC = GetDC(hwnd); 
SetBkColor( hDC, RGB(0, 255, 255) ); 
TextOut(hDC, 61, 210, "locationOfMaximum: 
ReleaseDC(hwnd, hDC); 

break; 

", 23); 

void ga_OnPaint(HWND hwnd) 
{ 

HDC hDC; 
PAINTSTRUCT ps; 
RECT rect; 
int cxClient, cyClient; 

hDC = BeginPaint(hwnd, &ps); 
SetBkColor( hDC, RGB(0, 255, 255) ); 
TextOut( hDC, 61, 210, IpszBuffer, strlen(IpszBuffer) ); 
TextOut( hDC, 440, 220, szNumGeneBuffer, strlen(szNumGeneBuffer) ); 
EndPaint(hwnd, &ps); 


